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ARTICLES 

Plotting and Scheming with Wavelets 
Dedicated with great affection to Alex F. T. W. Rosenberg, 

on the occasion of his 70th birthday 

COLM MULCAHY 
Spelman College 

Atlanta, GA 30314 

1. Introduction 

Wavelets are acquiring a visibility and popularity that may soon be on the scale first 
enjoyed by fractals a few years back. Like fractals, wavelets have attractive and novel 
features, both as mathematical entities and in numerous applications. They are often 
touted as worthwhile alternatives to classical Fourier analysis, which works best when 
applied to periodic data: wavelet methods make no such assumptions. However, the 
mathematics of wavelets can seem intractable to the novice. Indeed, most introduc- 
tions to wavelets assume that the reader is already well versed in Fourier techniques. 

Our main goal is simple: to convince the reader that at their most basic level, 
wavelets are fun, easy, and ideal for livening up dull conversations. We demonstrate 
how elementary linear algebra makes accessible this exciting and relatively new area at 
the border of pure and applied mathematics. 

In Plotting, we explore several ways of visually representing data, with the help of 
Matlab software. In Scheming, we discuss a simple wavelet-based compression 
technique, whose generalizations are being used today in signal and image processing, 
as well as in computer graphics and animation. The basic technique uses only 
addition, subtraction, and division by two! Only later, in Wavelets, do we come clean 
and reveal what wavelets are, while unveiling the multiresolution setting implicit in 
any such analysis. 

In Averaging and Differencing with Matrices, which may be read indepen- 
dently of Wavelets, we provide a matrix formulation of the compression scheme. In 
Wavelets on the World Wide Web we mention a natural form of progressive image 
transmission that lends itself to use by the emerging generation of web browsers (such 
wavelet-enhanced software is already on the market). 

In Wavelet Details, we attempt to put everything in context, while hinting at the 
more sophisticated mathematics that must be mastered if one wishes to delve deeper 
into the subject. Finally, in Closing Remarks, we mention some other common 
applications of wavelets. 

Along the way we find ourselves trying out an adaptive plotting technique for 
ordinary functions of one variable that differs from those currently employed by many 
of today's popular computer algebra packages. While this technique, as described 
here, is limited in its usefulness, it can be modified to produce acceptable results. 

We were much inspired by Stollnitz, DeRose, and Salesin's fine wavelets primers 
([15, 16]), which, along with [17], [18], [19], we recommend heartily to beginners wlho 
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desire more details. More general sulveys can be found in [7] and [11]. Although the 
wavelets we discuss here had their origins in work of Haar early in this century, the 
subject proper really gathered momentum only in the last decade. The historical 
development of wavelets is quite complex, as the main concepts arose independently 
in several different fields. We do not cite the numerous groundbreaking papers in 
these fields, leaving that to the books and surveys listed in the bibliography. It's a 
fascinating story, combining ideas first studied by electrical engineers, physicists, and 
seismologists, as well as pure mathematicians. For an especially readable account of 
how it all happened, we recommend Barbara Burke Hubbard's The World According 
to Wavelets [10], a remarkable book wlhich also goes into greater detail about wavelet 
applications than we do. A more mathematically concise version of this stoiy can be 
found in Jawerth and Sweldens' survey paper [11]. 

2. Plotting 

We begin by reviewing standard ways of plotting discrete data sets, in particular, 
sampled functions of the form y=f(x), and two-dimensional digital images. The 
limitations inherent in attempts to plot functions by uniform sampling will lead us, in 
the next section, to suggest a wavelet-based scheme to work around this difficulty. The 
need for adaptive plotting techniques will become obvious. The real purpose of this 
section is to drum up support for some sort of data compression. 

Suppose we have a finite set of planar data points (x, y), wlhich might be samples of 
a function y =f(x). A common method of displaying these data is to plot the 
individual points and then join adjacent points with line segments; this is precisely 
wlhat happens when many computer algebra packages graph functions. Graphing with 
Matlab's plot command, for instance, requires us to pick the x-values to be used. 
Plotting y = sin(15x) and y = sin(90x) this way, on the interval [0, 1], using 32 
equally spaced x-values, yields the pictures in FIGURE 1. The true nature of y = sin(15x) 
can be safely inferred from the first plot, as increasing the number of points sampled 
verifies. The second plot is another story, however. 

FIGURE l(b) suggests a function whose oscillations exhibit a pulsing pattern, al- 
though, symbolically, we expect a horizontally telescoped version of the preceding 
graph. The apparent pulsing behavior is an artifact of sampling uniformly at 32 points: 
sin(90x) has frequency 29 14.3239, which is just under half the sampling frequency. 

1~ ~ ~ ~ ~~~~FGR 1 
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FIGURE 1 

Plots of y = sin(15x) and y = sin(90x), using 32 uniformly sampled poinits 
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While we have just enough information to determine or reconstruct the function 
[8, p. 340], the graphical anomaly (known as aliasing) is not too sulprising. Using 
a few more points yields the anticipated 6-fold repetition of the pattern seen in 
FIGURE l(a). 

FIGURE 1 makes one thing abundantly clear: using uniformly-spaced sample points 
isn't the smartest approach, unless we are prepared to use a lot of points. Much better 
pictures are obtained from Matlab's fplot command, and from the corresponding 
Maple or Mathemnatica commands. These commands produce adaptive plots, wiLth 
points clustered wlhere the function seems to exhibit great variation. These adaptive 
plotting routines examine angles between connecting line segments in provisional 
internally-generated plots based on uniform sampling. Having identified regions of 
great variation, they subdivide certain intervals further before producing a visible plot. 
(For details, see [12, p. 216], [9, pp. 303-304], [22, pp. 579-584].) In the next section 
we will illustrate how wavelets give rise to an adaptive plotting scheme that does not 
require us, or the computer, to consider angles first while peeking at default plots. 

For the sorts of (differentiable) functions considered so far, intuition correctly 
suggests that, on the one hand, if we continually replot a function, sampling more and 
more frequently (uniformly or otherwise), we get a sequence of pictures that con- 
verges to the true graph. On the other hand, no matter what scale we view (or print) 
at, there comes a stage past which it is impossible to detect the use of additional 
sampled points. Just how many points need we plot to give the illusion of a correct 
graph? The answer depends very much on the amount of variation the function 
possesses over the interval in question, as well as on the size of the picture we are 
going to look at, as the next examples make clear. 

Some functions are beyond redemption from the point of view of plotting 
and displaying at any reasonable scale. A function like y = sin('), wlhich has in- 
finitely many extrema on (0, 1], is going to give this or any other plotting routine 
a run for its money. The (algebraically) innocent-looking function y = sin(e2X+9) 
achieves so many extrema (a staggering le11/i - 1/2] - r e9/IT- 1/2] +1= 
19058 - 2579 + 1 = 16480, to be precise) in the interval [0, 1], that the plot in FIGURE 

2(a), which is based on uniform sampling at 32 points, is totally misleading. Worse 
still, the more points we plot (even if we plot adaptively) the denser the pictures 
appear, on account of the nonzero thickness of depicted line segments. FIGURE 2(b) 
shows what we get if we sample uniformly at 256 points; increase this number further, 
and the plots start to fill up with connecting line segments. Sadly, given the natural 
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FIGURE 2 
Plots of y = sin(e 2x +9)using 32 and 256 points, respectively 
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physical limitations of plotters and printers, there is little hope in this life of getting an 
accurate graph of y = sin(e2x+9) on [0,1], and we hereby admit defeat. 

Of course, linear interpolation of sampled points is just one way of plotting: instead 
of joining the points with line segments, we could use the y-values as step levels for a 
staircase effect. FIGURES 3(a) and 3(b) illustrate step function alternatives to FIGURE 1(a) 
and FIGURE 2(a) respectively, namely y = sin(15x) and y = sin(e2x+9) using the same 
uniformly sampled points. 

1h 1_1 - 
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FIGURE 3 
Stairs plots of y = sin(15x) and y = sin(e2x+9) using 32 uniformly sampled points 

Purists may balk at the vertical lines connecting the steps in these pictures, which 
were generated using Matlab's stairs command, but for our purposes these 
uninvited guests are quite harmless. While these plots leave a lot to be desired, just as 
the linearly interpolated plots earlier did, the staircase method will lead to better and 
better approximations of the true graph when more points are used, although a lot 
more are needed to get away from the jaggies and obtain a continuous effect. (That 
continuous functions can be approximated on [0, 1] to arbitrary precision by piecewise 
linear functions, or by step functions, is a simple consequence of their being uniformly 
continuous on compact intervals [2, 24.4, 24.5].) 

There are also questions of data storage and transmission. These become particu- 
larly crucial when we explore higher-dimensional analogues of data points in the 
plane, such as digital images. 

The images of Emmy Noether in FIGURE 4 are derived from two-dimensional arrays 
of pixels-numbers that represent gray levels ranging from black (minimum number) 
to white (maximum number). These can be thought of as data points (x, y, z), where 
z measures the gray level at position (x, y): we draw a two-dimensional array of small 
squares, each shaded a constant gray level z according to its position (x, y) in the 
array. What we really have here are two-dimensional step functions-viewed from 
above-where the steps are shaded according to their height. (Color images can be 
dealt with by decomposing into red, green, and blue components, and treating each of 
these like grayscales.) 

FIGURE (4a) is composed of 256 X 256 pixels; so it is derived from a matrix of 
2562 = 65536 pieces of data, each representing a gray level. To produce FIGURE 4(b) 
we extracted a 64 X 64 submatrix from the original 256 X 256 matrix; the submatrix 
shows the region around the eyes. This second image requires 642 = 4096 pieces of 
data to store. Due to the lower resolution it is noticeably more "blocky;" we can 
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FIGURE 4 
Emmy Noether-in person and up close 

explicitly see the steps that make it up. Both images use 256 =28 levels of gray, and 
so are called 8-bit images. 

Clearly, it requires a lot of data to represent an image in this way, and that leads to 
practical problems. For one thing, a standard 1.44MB high-density floppy disc can 
only accommodate a handful of large, high-quality, color images. Furthermore, image 
files are time-consuming to transmit, as anybody who has viewed pictures on the 
World Wide Web can attest. In the images of Emmy Noether, there are regions of 
little or no variation. Our goal is to take advantage of these somehow, and come up 
with a more economical way to store the matrices that represent the images. 

3. Scheming 

Here we get down to business and describe an elementary wavelet scheme for 
transforming, and ultimately compressing, digital data. Whether these data represent 
samples of a function, a matrix of gray levels, or something else entirely, has no 
bearing on the scheme itself. While wavelets are behind the ideas presented, we defer 
any further mention of the "W" word until the next section. Readers who wish to 
duplicate the results and pictures found here can proceed directly to Averaging and 
Differencing with Matrices upon reading this section. 

After we describe the basics of the scheme, and look at some examples, we explain 
what we really mean by compression. A key ingredient is the standard technique for 
storing large sparse matrices in terms of their nonzero entries-values and locations 
only-rather than in matrix form. 

As motivation, we first consider the images in FIGURE 5, which use only two shades 
of gray. How much information is required to store the first one? If we assume that 
we have black unless specified otherwise, we need only say where the white is, so it 
seems reasonable to claim that two pieces of information suffice. If the image is a 
4 = 22 pixel image, we could store the facts that pixels (1, 2) and (2, 1) are white. But 
what if the image is, say, a 65536 = 2562 pixel image, which just happens to be 
composed of large black and white blocks? We will show how to use two pieces of 
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FIGURE 5 
How many pieces of information are needed to store these simple images? 

information to store the image in this case too; the principle works regardless of the 
actual resolution. 

Next consider the more complex image in FIGURE 5(b). If we treat this as a 16 = 42 
pixel image, we see eight white and eight black blocks, so we could argue that eight 
pieces of information suffice to specify this arrangement. But we can do better if we 
also use the fact that several of the white blocks are adjacent to each other. We will 
see presently that only five pieces of information are needed, even if the image is at a 
greater resolution than is apparent. (For a hint as to why five might be enough, 
consider the top left quarter of this array as a copy of the first arrangement.) 

We now move on to our main goal: describing how to transform arrays of data to a 
form in which regions of "low activity" in the original become easy to locate in the 
transformed version. Since matrices consist of neatly stacked rows of numbers, we 
begin with strings of data. Our method will have immediate application to plotting 
y =f( x) type functions, as we can identify uniformly sampled functions \vith data 
strings. 

Consider a string of eight data. This could, for instance, be uniform samples of a 
function, or a row of an 8 X 8 pixel image. In order to avoid fractions below, we use 
these specially cooked-up numbers: 

64 48 16 32 56 56 48 24 

We process these in several stages, in a manner commonly referred to as averaging 
and differencing, which we will explain in a moment. Successive rows of the table 
show the starting, intermediate, and final results. 

64 48 16 32 56 56 48 24 

56 24 56 36 8 -8 0 12 

40 46 16 10 8 -8 0 12 

43 -3 16 10 8 -8 0 12 
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The first row is our original data string, which we can think of as four pairs of 
numbers. The first four numbers in the second row are the averages of those pairs. 
Similarly, the first two numbers in the third row are the averages of those four 
averages, taken two at a time, and the first entiy in the fourth and last row is the 
average of the preceding two computed averages. 

The remaining numbers, shown in bold, measure deviations from the various 
averages. The first four bold entries, in the second half of the second row, are the 
result of subtracting the first four averages from the first elements of the pairs that 
gave rise to them: subtracting 56,24,56,36 from 64, 16,56,48, element by element, 
yields 8, - 8,0, 12. These are called detail coefficients; they are repeated in each 
subsequent row of the table. The third and fourth entries in the third row are 
obtained by subtracting the first and second entries in that row from the first elements 
of the pairs that start row two: subtracting 40,46 from 56,56, element by element, 
yields 16, 10. These two new detail coefficients are also repeated in each subsequent 
row of the table. Finally, the second entiy in the last row, -3, is the detail coefficient 
obtained by subtracting the overall average, 43, from the 40 that starts row three. 

It is not hard to see that the last average computed is also the overall average of the 
original eight numbers. This has no effect on the shape of (any plot of) these data: it 
merely anchors the data vertically. The seven detail coefficients are what really 
determines the shape. 

We have transformed our original string of eight numbers into a new string of eight 
numbers. The transformation process is, moreover, reversible: we can work back from 
any row in the table to the previous row-and hence to the first row-by means of 
appropriate additions and subtractions. In other words, we have lost nothing by 
transforming our string. What have twe gained? The opportunity to fiddle tvith the 
mnostly detail" version! If we alter the transformed version, by taking advantage of 

regions of low activity, and use this doctored version to work back up the table, we 
obtain an approximation to the original data. If we are lucky, this approximation may 
be visually close to the original. 

Our string has one detail coefficient of 0, due to the adjacent 56's in the original 
string; this is one region of low activity. The next smallest detail coefficient (in 
magnitude) is the -3. Let's reset that to zero, putting 43, 0, 16, 10, 8, - 8, 0, 12 in the 
last row of a blank table, and work our way back up by adding and subtracting as 
indicated above. The completed table looks like this: 

67 51 19 35 53 53 45 21 

59 27 53 33 8 -8 0 12 

43 43 16 10 8 -8 0 12 

43 0 16 10 8 -8 0 12 

The first row in this table is our approximation to the original data. In FIGURE 6(a) 
we plot the original and the approximation, the latter using dashed lines; for reasons 
which will be clear later, we have plotted the string as y-values against eight equally 
spaced x-values in [0, 1]. While the differences are discernible, many observers would 
be hard-pressed to distinguish the plots if seen one at a time. 

In FIGURE 6(b) we plot the original against the approximation (59 59 27 27 53 53 
45 21), obtained by the above procedure after dropping two more detail coefficients, 
namely the -8 and the 8. Considering how few data (only five numbers) this 
approximation is based on, it's surprisingly good. 
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FIGURE 6 
Eight pieces of data versus approximations based on six and four detail coefficients, respectively 

Before we go on, we note that the process can be generalized to strings of any 
length. We can always pad at the end, say with zeros, until a string has length equal to 
a power of two. 

To appreciate the full potential of this scheme, we must think big. Starting with a 
string of length 256 = 28, eight applications of averaging and differencing yield a 
string with one overall average and 255 detail coefficients. We can then fiddle with 
this and work back to an approximation of the original. 

In general the compression scheme works like this: Start with a data string, and a 
fixed nonnegative threshold value 8. Transform the string as above, and decree that 
any detail coefficient whose magnitude is less than or equal to 8 will be reset to zero. 
Hopefully, this leads to a relatively sparse string (one with a high proportion of zeros), 
which is thus compressible when it comes to storage. This process is called lossless 
compression when no information is lost (e.g., if 8 = 0); otherwise it's referred to as 
lossy compression (in which case 8 > 0). In the former case we can get our original 
string back. In the latter we can build an approximation of it based on the altered 
version of the transformed string. The surprise is that we can throw out a sizable 
proportion of the detail coefficients, and still get decent results. 

Let's try this for y = e-lx sin(100x) on [0, 1], which has a large region of relatively 
low activity. The plots in FIGURE 7 are based on 32 and 256 uniformly sampled points. 
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FIGURE 7 
Plots of y = e - 10 X sin(100x) using 32 and 256 uniformly sampled points, respectively 

This content downloaded from 66.194.72.152 on Wed, 31 Jul 2013 23:55:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


VOL. 69, NO. 5, DECEMBER 1996 331 

As FIGURE 7(b) illustrates, half of the points plotted are essentially wasted. Consider 
the string of 256 y-values used to derive this plot, which range from - 0.6246 to 
-0.8548. After eight rounds of averaging and differencing, we get a transformed string 
which ranges from - 0.2766 to 0.4660. Dumping all detail coefficients less than or 
equal to 0.04 in magnitude, we get an altered transformed string with 32 nonzero 
entries. From this sparse string we build an approximation of the original string, which 
is plotted in FIGURE 8(a). Despite its limitations, this does a better job than FIGURE 7(a) 
of conveying the flavor of the actual graph. FIGURE 8(b) shows the even better picture 
obtained when we reduce the cut-off threshold to 0.01, in which case the altered 
transformed string has 70 nonzero values. 

1 1 1 
0.8 0.8 
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FIGURE 8 
Approximations to y = e - lx X sin(lOOx) using 32 and 70 detail coefficients, respectively 

The reason why such low thresholds (relative to the range of values) give good 
results here, using few detail coefficients, is that this function's pulse is rather weak in 
half of the interval of interest. Using 70 detail coefficients out of 256 gives a 
"compression ratio" of around 3.5: 1. 

There is a subtlety here worth highlighting: the plots in FIGURE 8 were generated 
from just 32 and 70 nonzero numbers, respectively, in sparse strings of length 256 (the 
doctored transformed strings). However, the plots themselves used all 256 (mostly 
nonzero) numbers obtained from those strings by reversing our averaging and 
differencing process. The lossy compression comes into play once we note that it takes 
significantly less space to store sparse strings of length 256-with only 32 or 70 
nonzero entries-than arbitrary strings of length 256. 

The approximation technique just outlined has shortcomings as an adaptive plotting 
scheme-shortcomings that were apparent as early as our first efforts in FIGURE 6. 
Most obviously, modest-sized data sets such as those we have been considering lead to 
thresholded strings of data that produce unacceptably jagged plots. This is because 
thresholding often yields data strings with constant stretches (horizontal steps) fol- 
lowed by dramatic leaps or drops (steep segments). Perhaps surprisingly, regions of 
lower activity produce the worst "jaggies." A less obvious problem, which FIGURE 6(a) 
illustrates, is that the range of y-values in the approximation may exceed the range of 
the original y-values. In Wavelet Details we will mention smoother schemes that 
largely avoid these problems. 

We explored the above transformation technique in some detail because we can 
repeat it for image data sets with almost no extra work. What's more, we get better 
results, since realistic images consist of much larger data sets, in which steps have to 
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be quite extreme to produce visible blockiness (the higher-dimensional analogue of 
jaggedness). 

We could simply concatenate the rows to obtain one long string, but then we 
wouldn't be able to exploit natural correlations between adjacent rows of real-world 
image matrices. Instead, we treat each row as a string and process as above, obtaining 
an intermediate matrix, and then apply exactly the same transformations to the 
columns of this matrix to obtain a final row- and column-transformed matrix. 

Specifically, to apply the scheme to a 256 X 256 matrix, we do the averaging and 
differencing eight times on each row separately, and then eight times on the columns 
of the resulting matrix. Averaging and differencing columns can also be achieved by 
transposing the row-transformed matrix, doing row transformations to the result of 
that transposition, and transposing back. The final result is a new 256 X 256 matrix, 
with one overall average pixel value in the top left hand corner, and an awful lot of 
detail elements. Regions of little variation in the original image manifest themselves as 
numerous small or zero elements in the transformed matrix, and the thresholding 
principle described earlier above can be used to effect lossy image compression. 

First, let's go back to the simple images in FIGURE 5. Suppose both are 256 x 256 
pixel images, composed of 128 X 128 and 64 X 64 monochromatic sub-blocks, respec- 
tively. If black pixels match up with matrix entries of 0, and white ones with 1, then 
performing eight row and then eight column transformations on the matrices corre- 
sponding to the images, we obtain matrices that are extremely sparse. The only 
nonzero entries are bunched up in these 4 X 4 submatrices in their respective upper 
left-hand corners: 

I 0 0 0 1 0 0 4 
o -+ 0 0 0 0 0 1 

2 ~~~~~~~~~~~~~4 
0 0 0 0 0 0 -2 0 

O O O O O 1 0 0 o 0 0 0 0 2 

Thus the first transformed matrix has only two nonzero entries-whereas the second 
has five. Storing these matrices efficiently leads to a form of lossless compression. The 
original images can be reconstructed exactly from these smaller data sets. 

Now we move on to lossy compression. Applying our thresholding scheme to 
images with only a few gray levels, such as those in FIGURE 5, is guaranteed to produce 
poor results, because the averaging process introduces numbers which, if altered and 
transformed back to image form, correspond to gray levels that were not originally 
present. 

Consider the 8-bit image Noetherian image in FIGURE 4(a), which contains a great 
deal of black; in fact, black accounts for 20% of the pixels. When we apply eight row 
and eight column transformations, we obtain a matrix 30% of whose entries are zero; 
an increase that can be attributed to the other areas of little variation in the original. 
For appropriate choices of 8-depending on the range of numbers in the matrix used 
to represent the gray levels of the original image-we get the compressed images in 
FIGURE 9. Note the concentration of small blocks near the hairline and collar line, and 
in the facial features, illustrating the adaptiveness of this scheme. The extreme 
blockiness of these images is due to the nature of averaging and differencing, which is 
equivalent to working with certain step functions, as we will see in the next section. 

The first image uses 6558 out of 2562 = 65536 (actually 65535) coefficients, and the 
second only 1320. In a sense, we could claim compression ratios of 10:1 and 50:1, 
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FIGURE 9 
Noetherian compression-using 10% and 2% of the detail coefficients, respectively 

respectively, but in view of the fact that the original matrix has only 45870 nonzero 
elements, a more realistic claim might be ratios of 7:1 and 35:1, respectively. Indeed, 
ratios veiry close to these turn up when we check how many bytes Matlab needs to 
store the sparse forms of these matnices, whether within a Matlab session workspace 
or in external data files. However we compute compression ratios, it's impressive that 
the images are recognizable at all, considering how litfie information was used to 
generate them. 

A modification of the above approach, known as normalization, that will likely seem 
unmotivated for now, yields significantly better results: In the "averaging and differ- 
encing" process, divide by x'2 instead of 2 (so that a pair a and b is processed to yield 
(a + b)/ F? and (a - b)/ F2 ). Perhaps unexpectedly, this leads to compressed im- 
ages that are more acceptable to the human eye than those above. FIGURE 10(a) shows 

..... . ,6i.a6... 

r -f-; i_ _r ................ ,,.,,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~..... 

FIGURE 10 
Normalized compression-using 2% and 1% of the detail coefficients, respectively 
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the normalized compressed version of FIGURE 9(b); both images use 2% of the 
coefficients. FIGURE 10(b) shows a normalized compressed image that is visually 
comparable to-if not better than-FIGURE 9(b), but uses only 1% of the coefficients. 

We freely admit that compression ratio computation is a rather delicate matter, but 
the compression schemes we have outlined are surely worthwhile, no matter how one 
computes these ratios. 

We remark that for random matrices, whose entries are interpreted as representing 
gray levels, there is no hope of any compression. The transformed versions tend to 
have no nonzero entries to speak of, and thresholding leads to approximations which 
look unacceptably non-random. 

We summarize the central idea of the compression scheme: Data that exhibit some 
sort of structure can be efficiently stored in equivalent form as sparse matrices; 
specifically, in "transformed and sparse" form for lossless compression, and in 
"transformed, thresholded, and sparse" form for lossy compression. To view the data, 
or an approximation of it, one simply "expands" to non-sparse form and applies the 
inverse transformation. 

(At this point, readers may skip to Averaging and Differencing with Matrices if 
they wish. There we describe one matrix multiplication implementation of the 
compression scheme just discussed.) 

4. Wavelets 

Our principal aim here is to put our earlier discussions on a firmer mathematical 
foundation, and to acquaint the reader with some of the standard concepts and 
notations used in the general study of wavelets. What are wavelets, anyway? Before 
we try to answer this question, we present an alternative vector space description of 
our discrete, 8-member data sets. 

First we identify data strings with a certain class of step functions. A string of length 
k is identified with the step function on [0, 1] which (potentially) changes at k - 1 
equally spaced x-values and uses the string entries as its step heights. For instance, 
the string of y-values arising from uniformly sampling sin(15x) 32 times in [0, 1] is 
identified with the step function plotted in FIGURE 3(a). These step functions can in 
turn can be thought of as linear combinations of dyadically dilated and translated unit 
step functions on [0, 1). We now explain this in some detail. 

Consider the Haar scaling function: 

Og( ) 
I on [0, 1) 
0 lewhere. 

Note that 4 satisfies a scaling equation of the form +(x) = Y2 E ci p(2 x - i), where 
in our case the only nonzero ci's are c0 = cl = 1, i.e., +(x) = +(2x) + +(2x - 1). 

For each 0 < i < 2 3- 1, we get an induced (dyadically) dilated and translated 
scaling function 

(hi3( x) = 0(2 3x-i). 

These eight functions form a basis for the vector space y3 of piecewise constant 
functions on [0,1) with possible breaks at .8 7 Note that 40 is 1 on [0,?) 
only, 1 is 1 on [ only, 42 is 1 on [8,3) only, and so on. FIGURE 11 shows three of 
these basis functions together with a typical element of 3. Actually, the last plot in 
FIGURE 11 shows the rather special element 

64pg + 48 43 + 16 0 + 324g3 + 56 43 + 56 03 + 48 03 + 240 3 E 3, 
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0.6 -0.6 - 

0.4 -0.4- 

0.2 -0.2- 

0 0, 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

80 

70 

0.8 60 - 

0.6 5 
40- 

0.4- 
30- 

0.2 -20- 

0 ______________________ ~~~~10 
0~~~~~~~~~~~~~~ 
0 0. 1 0. 2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0. 1 0. 2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

FIGURE 11 
The first three of the eight basis functions 43 (0 < i < 7) and an element of 23 

which is just another way of thinking of our earlier data string 

64 48 16 32 56 56 48 24. 

In contrast to the piecewise linear plot in FIGURE 6, we now have a step function 
representation of our data string. Similarly, any string of length eight can be identified 
with an element of 73. We can describe the averaging and differencing scheme from 
the last section in terms of this version of data strings, but first we need some more 
vector spaces. As above, the four functions p i2defined by 

i2( X) := (2 2X - i), 

for 0 < i ? 22 _ 1, form a basis for the vector space y2 of piecewise constant 
functions on [0, 1) with possible breaks at 4,4, 34; the two functions 4i' defined by 

O.'( x) := ,(2'x -i), 

for 0 < i ? 2' - 1, form a basis for the vector space '' of piecewise constant 
functions on [0, 1) with a possible break at ,; and 4':= 4 itself is a basis for the 
vector space Y? of constant functions on [0, 1). Note that y? C Cl c y2 C y3. 

We can identify the various averages derived in Scheming with elements of these 
new vector spaces, by treating these averages as lower-resolution versions of the 
original string. Specifically, we match up 56,24,56,36 with 56402 + 2402 + 56 02 + 
36402, then 40,46 with 404O + 4644, and finally 43 with 43p00 = 434. 
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It only remains to find a new interpretation for the detail coefficients. This is where 
wavelets finally enter the picture-fasten your seatbelts! Consider the inner product 

Kf, g) f'f(t) g(t) dt 
0 

defined on Y3; two functions are orthogonal if and only if their product on [0, 1] 
encloses equal areas on each side of the horizontal axis. For each j = 0, 1, 2, we define 
the wavelet space 7,ti to be the orthogonal complement of 7i in 77 + 1, so that we 
get the (orthogonal) direct sum decomposition: 

Fj+ 1 = yj d3 

Certainly 2 c C ; in fact we have 

3 = 72 e3 t2 = 71 (Dj e3 t2 = 770 e3 70 erlA et 2 

Each /7Ji has a natural basis { xl: 0 < i < 2J - 1} which we will describe in a 
moment. Expressing step functions in 73 in terms of these new bases brings us to 
the various detail coefficients we encountered before, which will henceforth be known 
as wavelet coeficients. 

The mnother Haar wavelet is defined by 

on [0,) 

X( X) I4 -1 on[ ,2) 
O elsewhere. 

(Equivalently, we could have defined x(x) := (2 x) - 0(2 x - 1).) Notice that { X} is 
a basis for 7/? since x is clearly orthogonal to 4. The four functions 

xi 2( x) := X(22x-i ), 
for O < i < 22 - 1, form a basis for 72, because, on the one hand, they are orthogonal 
to the corresponding functions i2 (O < i < 3) which form a basis for the subspace 72 
of 73, and, on the other hand, they are visibly orthogonal to each other. (See 
FIGURE 12.) 

Similarly, the two functions Xi' defined by 

xi (x) := X(21x-i), 

for 0 < i < 21 - 1, form a basis for W1 
In present notation, the three steps in the averaging and differencing transforma- 

tion in the preceding section correspond to the following chain of identities: 

64)3 + 48 )3 + 16 03 + 32g03 + 56043+ 56 03 + 4803 + 24073 

= 56 )2 + 2404) + 5609) + 36 02 + 8X 2 - 8X2 + ?X2 + 12X2 

= 4001 + 4601 + 16X1 + IOX' + 8 X2 - 8 X2 + ?X22 + 12X32 

= 4300 - 3Xo + 16X1 + 1OX + 8 X2 - 8X2 + 0X2 + 12X2. 

The final, fully-transformed version, consists of one overall average and seven wavelet 
coefficients; this is simply a decomposition with respect to a very special basis. 
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FIGURE 12 
The four wavelets Xi2 (O < i < 3), which form a basis for 72 

Our earlier dumping of the smallest detail coefficients, to effect a good approxima- 
tion to the original data, boils down to setting some of the wavelet coefficients to zero. 
In our first compression example, we approximated 

6403 + 4803 + 1603 + 3203 + 5604 + 5603 + 48063 + 2403 

= 43<b0 - 3Xo + 16X4 + IOX- + 8 - 8 + ?X2 + 12X3 

by the element 4300 + OXo + 16X4 + IOX' + 8X2 - 8 X2 + ?X2 + 12X3. These are 
illustrated in the stairs plots in FIGURE 13. As in the zig-zag plots in FIGURE 6(a), the 
two data strings are difficult to tell apart visually. 

These ideas can be extended in the obvious way: For each nonnegative integer j, let 
Fj be the vector space of piecewise constant functions on [0, 1) with possible breaks 
at 1/2j, 2/2j, 3/2,...,1 - 1/2]. Then the 2i functions Xii defined by Xi(x):= 

0(2jx - i), 0 < i < 2i - 1, form a basis for FJ. We thus get an infinite ascending 
chain' of vector spaces ? c C 1 c 2C,, 

2 C ... C 7i C <j+1 C, .., each of which is 
an inner product space with respect to the inner product Kf, g) olfl(t)g(t) clt. The 
wavelet space 7//i is then defined to be the orthogonal complement of 2' in 2i+ l. 
The functions 

xj( x) := X(2ix-i ), 

Emmy Noether's presence in these pages might prompt one to ask whether this chain stops! Ideally, no, 
but in practice, yes: for sampled signals there is a limit to the resolution that can be attained. 
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FIGURE 13 
Spot the difference-a step function and an approximation of it 

for 0 < i < 2i - 1, form a basis for 2r/Y. This gives rise to another infinite ascending 
chain of vector spaces 2? c K1 c K2 C ... C 2K/ C '>i C . . ., and for any j we 
have 

77] 
= 7/-J //Jr-l 

- 

..j-2 2rj-2 2r/j-l =. 

Working with strings of length 256 (such as when approximating plots of functions 
sampled uniformly at 28 points) is thus equivalent to working in the larger space 778 
and using the identity: 

78 = 70 D yO D yl D D y6 Dy7. 

There are two-dimensional analogs of these ideas, based on products of dilated and 
translated versions of univariate scaling functions and mother wavelets, which provide 
a theoretical framework for the digital image representation and compression ideas 
from the last section. Details can be found in [15, 16, 17, 8, 7, 11]. 

5. Averaging and Differencing with Matrices 

Here we give a natural matrix formulation of the averaging and differencing 
technique explained in Scheming. We provide enough details to allow the curious 
reader to use a standard computer algebra package, such as Matlab, to reproduce 
the pictures in this article. The Matlab M-files we used are available from 
http: // www. spelman. edu/ colm. Matrix multiplication is not necessarily the 
most efficient approach here; for large data sets there are better ways to effect the 
transformations. 

Let A1, A2, and A3, respectively, denote the following matrices: 

2 0 0 0 0 0 0 ?0 0 0 0 0 0 

01 ? 0 ?0 0 0 0 01 ? 0 0 0 0 0 

0020 0 0 22 2 0 0 01000' 
0 0 2 0 0 0 -2 0 0 0 0 01 0 0 

2 2 2 2 

00 0 0 0 0 00 ? - ? 0 0 0 o o 2 -0 0 0 0 0 0 0 0 1 0 
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1 1 o o o o o o 2 2 

O 0 0 0 0 0 0 0 

0 0 01 0 0 0 0 0 0001 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 
O O O O O O 0 1 

The three-stage transformation from (64 48 16 32 56 56 48 24) to (43 -3 16 
10 8 -8 0 12) can be thought of in terms of these matrix equations: 

(56 24 56 36 8 - 8 0 12) = (64 48 16 32 56 56 48 24) A1, 

(40 46 16 10 8 - 8 0 12) = (56 24 56 36 8 - 8 0 12) A2, 

(43 - 3 16 10 8 - 8 0 12) = (40 46 16 10 8 - 8 0 12) A3, 

or, equivalently, this single equation: 

(43 - 3 16 10 8 - 8 0 12 ) = ( 64 48 16 32 56 56 48 24) A1 A2 A3. 

So it all boils down to linear algebra! Since the columns of the Ai's are evidently 
orthogonal to each other with respect to the standard dot product, each of these 
matrices is invertible. The inverses are even easy to write down-after all they simply 
reverse the three averaging and differencing steps. In any case, we can recover the 
original string from the transformed version by the operation: 

(64 48 16 32 56 56 48 24) = (43 -3 16 10 8 -8 0 12)A3 1Ay1A7A1 

It is a routine matter to construct the corresponding 2' x 2' matrices A1, A2) ... Ar 
needed to work with strings of length 2r, and to write down the corresponding 
equations. For simplicity we write W in place of the product A1 A2 ... Ar from now 
on. As mentioned earlier, there is no loss of generality in assuming that each string's 
length is a power of 2. 

For two-dimensional image matrices, we do the same row transformations to each 
row, followed by corresponding column transformations. The beauty of the string 
transformation approach is that the equations relating the "before" and "after" strings 
are valid applied to an image matrix and its row-transformed form. If P is a 2r x 2r 
image matrix then the equations Q = PW and P = QW-1 express the relationships 
between P and its row-transformed image Q. To handle column transformations, we 
repeat the steps above with a few transposes (denoted by ') thrown in. Putting 
everything together gives the following equations, which express the relationship 
between the original P and the row-and-column-transformed image T: 

T= ((PW)'W)' = W'PW and P = ((T')W-l)'W-l = (Wl)'TWl. 

One smart shortcut we can take is to replace all of the + 1/2's in the matrices A, 
with + 1/V4's: this is equivalent to the non-intuitive "averaging" mentioned at the 
end of the last section. The columns of each matrix AJ then form an orthonormal set. 
Consequently the same is true of the matrix W, which speeds up the reconstruction 
process, since the matrix inverses are simply transposes. There is more than mere 
speed at stake here: as we already saw in FIGURE 10, this normalization also leads to 
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compressed images that are more acceptable to the human eye. (In the language and 
notation introduced in Wavelets, this is equivalent to normalizing the Haar scaling 
and wavelets functions, so that we use 

0J( x) = 2 j12f (2i X- i) and Xi( x) =2j2X (2x-i), 
(for 0 < i < 2i - 1) as bases for 77i and iJ, respectively.) 

In matrix terms, the image compression scheme works like this: Start with P, and 
compute T = W' PW, which (we hope) will be somewhat sparse. Clhoose a threshold 
value 8, and replace by zero any entries of T whose absolute value is less than or 
equal to 8. Denote the resulting doctored matrix by D; this is sparse by design, and 
thus easier to store and transmit than P. To reconstruct an image from D, compute 
R = (W1)'DW '. 

Lossless compression is the case where D = T (e.g., if 8 = 0) so that R = P. 
Otherwise we have lossy compression, in which case the goal is to pick 8 carefully, so 
as to balance the conflicting requirements of storage (the more zeros in D, the better) 
and visual acceptability of the reconstruction R. 

6. Wavelets on the World Wide Web 

In the case of real-time image retrieval, such as grabbing images on the World Wide 
Web, the compression technique we have discussed allows for a type of progressive 
image transmission: When an image P is requested electronically, a wavelet-encoded 
version T is brought out of storage, and bits of information about it are sent "over the 
wires," starting with the overall average and the larger wavelet coefficients, and 
working down to the smallest wavelet coefficients. 

As this information is received by the user, it is used to display a reconstruction of 
P, starting with a very crude approximation of the image that, rapidly updated and 
refined, looks noticeably better as more wavelet coefficients are used. For instance, 
the images in FIGURES 9 and 10 could form stages in a progressive transmission. 
Eventually (assuming the user has deemed this picture worth waiting for) all of the 
wavelet coefficients will have been transmitted and a perfect copy of P displayed. If 
the user loses interest or patience along the way, she can easily halt the process and 
move on to some more pressing task, such as learning Fourier analysis. 

7. Wavelet Details 

In attempting to make this introduction to wavelets as easy and painless as possible, 
we may have suggested that the subject is neither deep nor profound: nothing could 
be further from the truth. Here we try to put the Haar wavelets, which were used in 
image processing as far back as the 1970s [14], in context, and hint at the recent 
generalizations which have generated so much interest in the mathematical commu- 
nity and elsewhere. 

A wide variety of wavelets is available to decompose, analyze, and synthesize both 
discrete and continuous data. In general, a wavelet is any function whose dilations and 
translations form a Riesz basis for the function space y2(R) (the set of square 
integrable functions on the real line). For simplicity, we ignore normiialization consid- 
erations. We also assume that all functions are real-valued. 

Most wavelets are derived from a corresponding scalingfunction, namely a function 
k satisfying a scaling equation k( x) = Ei,E zciP(2 x - i). Given such a function, we 
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define Y' to be the closure of the linear span of the set of integer translates 
(,i?(x):= +(Px - i), i E= , of ?((x), and then for each j E 1 take 7i to be the closure 
of the linear span of the set of dilated and translated functions 4J( x) 

(2ix - i), i E Z. A nultiresolution analysis (MRA) is said to exist when the induced 
doubly infinite collection of vector spaces ... c c2 C1 C 0C C C 2 C ... 

satisfies three criteria: 

1. f(x)E=i if andonlyiff(2ix) EW, Vj E 

2. nfi ./={o} 
3. Ui yi =y2(1R) 

Once a MRA is in place, it is an easy matter to define the corresponding mnother 
wauelet: 

X ( x ) E(1) c,1- i (P2 X- i ) 
iez 

where +P( x) = Ei E ci? (2 x - i). This wavelet turns out to have zero integral over the 
whole real line. 

One way to generalize the Haar scaling function (which is a first order B-spline) and 
wavelet is as follows: for any k E N, the kth order B-spline (which can be thought of 
as the convolution of the Haar scaling function with itself k - 1 times) satisfies the 
scaling equation +( x) = Ek= 2-k+ I (k>)(2x - i). This yields an MRA, and hence a 

wavelet in the manner just described [6, Chapter 5], [18]. These spline wauelets are 
compactly supported and have k - 2 continuous derivatives, but only in the Haar case 
do we get orthogonality between members of the induced family of translated and 
dilated functions. 

While one does not always insist on orthogonality for such basis functions, it is 
generally considered desirable for wavelets to have compact support, or at least rapid 
decay, in sharp contrast to the behavior of the sines and cosines which play a central 
role in Fourier analysis. This renders wavelets ideal for representing non-periodic 
functions, especially those with spikes or discontinuities. For one thing, fewer basis 
elements and coefficients are needed to represent such a function when compared 
with the classical Fourier series expansion. 

There are three things to try to juggle here: smoothness, support, and orthogonality. 
Sadly, we can't have everything: there are no infinitely differentiable orthonormal 
wavelets which have exponential decay (never mind compact support) [6, Chapter 5]; 
so some sort of compromise is in order. 

The spline wavelet construction above can be modified to yield the so-called 
Battle-Lemarie wavelets, which have exponential decay, are k - 2 times continuously 
differentiable and orthonormal. In 1988, Daubechies made a breakthrough with the 
construction of compactly supported, orthonormal wavelets with any desired finite 
degree of smoothness. Her simplest non-trivial example is continuous, and is derived 
from a continuous scaling function X, which satisfies 

P( X) 0+(2x) .(P2x - 1 ) 

+ -F3 (5(2 x- 2) + 
I - F 

((2x -3). 

There are no closed form expressions for these functions: they are studied by means of 
a careful analysis that starts with taking the Fourier transform of the scaling equation 
[6, Chapter 6]. (For fixed x, we can solve for +( x) as the limit of the sequence Ij( x) 
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defined recursively via: 11 (x) = EL zci I_1(2x -i), where (1o is the Haar scaling 
function.) Despite our ingrained instincts, which suggest that we try to "solve" any 
equation set in front of us, in general there is no need to get our hands on the scaling 
functions or wavelets themselves; in many ways they are best explored using the 
numbers ci alone. 

These more sophisticated, continuous wavelets produce smoother, more satisfactory 
compressed images than the ones that we obtained [15, 16, 17]. Here lies the real 
potential for progressive image transmission, and perhaps adaptive plotting, too. 

For full mathematical treatments, the reader could start with [6], [5], or [13]. Books 
covering applications as well as theory include [3] and [1]. A gentler survey of the field 
can be found in [10]. 

8. Closing Remarks 

A major advantage of wavelet over Fourier methods, which we have not touched on at 
all, is that with wavelets it is possible simultaneously to localize in space (or time) and 
frequency. Wavelets capture detail at different scales at the same time: the plots of the 
damped sine curve in FIGURE 8 and the compressed images of Emmy Noether 
illustrate how the wavelet details take advantage of the changing nature of the data 
variation over different regions. See [6], [5], or [13] for further details. 

Glassner's PrTinciples of Digital Image Synthesis is an excellent resource, full of 
helpful pictures, for wavelet basics as they relate to graphics, that also discusses some 
of the connections with Fourier methods [8, Chapter 6]. Strang and Nguyen [20] treat 
wavelets from a signal processing perspective. 

For an account of a recent adoption of wavelets as a standard for image compres- 
sion, see [4] or [20]. Another common use of wavelets is to the denoising of digital 
data. There, unlike in the compression we considered, one discards detail coefficients 
larger than a certain threshold (see [7], [20]). There are also wavelet applications to 
video compression [20]; to medicine (tomography, MRI images, mammography, 
radiography, and neural networks) [1]; to audio and speech signals [21], [20]; and to 
partial differential operators and equations [3], [20]. 

An excellent World Wide Web resource for wavelets is The Wavelet Digest at the 
University of South Carolina, http: / /www. math. sc .edu / - wave let /. 
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Good-bye Descartes? 
KEITH DEVLIN 

Saint Mary's College of California 
Moraga, CA 94575 

Happy birthday, Descartes 

This year is the 400th anniversary of the birth of Rene Descartes. To future historians, 
this might well be seen as the period when the Cartesian domination of science came 
to an end. Having long underpinned Mankind's attempts to comprehend the physical 
world, mathematics has hitherto failed to achieve comparable success in our attempts 
to understand the human world of people and minds. The lofty goals of artificial 
intelligence, cognitive science, and mathematical linguistics that were prevalent in the 
1950s and 1960s (and even as late as the 1970s) have now given way to a realization 
that the 'soft' world of people and societies is almost certainly not amenable to a 
precise, predictive, mathematical analysis to anything like the same degree as is the 
'hard' world of the physical universe. 

In the days when physics and chemistry were the fundamental sciences that 
underpinned society, mathematics occupied a premier position. It was sometimes 
referred to as the 'Queen of the Sciences.' But today, in the Age of Information, 
psychology, sociology, and communication science-the human sciences-occupy at 
least an equal position in the pecking order, and the mathematical sciences-and 
mathematics itself-each has to adjust to being just one of a number of ways of 
understanding how minds work, how people communicate, and how societies func- 
tion. These days, mathematics frequently finds itself blended in with other disciplines, 
giving rise to a fascinating new way of using mathematics-what in a forthcoming 
book [3] I refer to as 'soft mathematics.' 

And with this change, we are moving away from the Cartesian view of the world 
that has been characteristic of scientific investigation for the past three hundred years. 

The rise of Cartesian science 

To begin at the beginning, what is nowadays often referred to as 'Cartesian science' 
(or just plain 'science') has its most identifiable beginning witlh the ancient Greek 
philosopher and mathematician Thales around 600 B.C., with the Pythagoreans a 
hundred years later, and with Plato and Aristotle around 350 B.C. To Plato and others 
we owe the notion that mathematics provides the key to understanding the physical 
world. The success of mathematics in astronomy and later the study of the physical 
word in general was dramatic. As a result, it is hardly surprising that mathematics 
came to occupy a pivotal role in what is generally known today as the 'scientific 
method.' 

The modern scientific method, based on observation, mathematical measurement 
and description, and logical analysis, owes much to the three individuals Galileo 
Galilei, Francis Bacon, and Descartes. In the words of Galileo, "The great book of 
nature can be read only by those who know the language in which it is written, and 
this language is mathematics." In a similar vein, Descartes wrote that he "neither 
allows for nor hopes for principles in physics other than those that lie hidden in 
geometry or in abstract mathematics, for in this way all phenomena of nature will 
yield to explanation, and a deduction of them can be given." 
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I think, therefore I am 

For Galileo, the role of the scientist was focused on measurement and the discovery of 
descriptive, quantitative formulas, rather than the formulation of casual explanations 
obtained by philosophical reflection, wlhich had been typical of earlier work in 
'science.' In many ways, Galileo and Bacon were each early forerunners of the 
'no-nonsense, down-to-earth, practical scientist' of the twentieth century. 

Descartes was in many ways an early forerunner of today's 'applied philosopher.' A 
delicate individual throughout his life, he was born to a noble family on March 31, 
1596, at La Haye, near Tours in France. He received his early education at Jesuit 
College in La Fleche, leaving school in 1612. Early success at the Paris gambling 
tables might have indicated the keen mathematical mind that was later to emerge, but 
it was to soldiering that he turned first, enlisting in the cause of Prince Maurice of 
Orange at Breda in Holland in 1916. 

On November 10, 1619, he reported having three vivid dreams that persuaded him 
to turn from being a soldier to the more peaceful life of a philosopher. The legacy he 
left to Mankind as a result of that career switch was swiftly established. For it was 
during the ensuing two years that he both created analytic geometry and proposed the 
idea that scientific truth be established not by dialectic reasoning but by rational 
deduction based on experiment and observational evidence. 

Between 1619 and 1621, Descartes moved between Paris and Rome, and it was 
during this period that he met Cardinal Richelieu, later to become his patron. He 
lived in Holland from 1628 to 1648, and it was there that he wrote his work Le 
Monde. In 1634, when Le Monde was completed, Galileo's enforced public rejection 
of the Copernican system persuaded Descartes to abandon publication, and he made 
arrangements to have it published after his death. However, in June of 1637, with the 
approval of Cardinal Richelieu, he started to publish major parts of his work as the 
series Essais Philosophiques. 

After serving as tutor to Princess Elizabeth of Holland for several years, Descartes 
spent the last year of his life in Sweden, at the invitation of Queen Christine, who had 
heard of his reputation and desired to be instructed by him. He died on February 11, 
1650, the victim of a combination of his delicate health and the cold Swedish winter. 

Though he believed that all science could be reduced to mathematics, Descartes 
made use of very little mathematics in his own work, and his only substantial 
contribution to mathematics was his famous La Ge'one'trie, in which he created 
analytic (or 'Cartesian') geometry. This work was included as an appendix to the 
volume Discourse on the method of properly guiding the reason in the search of trulth 
in the sciences, the first of the Essais Philosophiques. Though the publication of this 
volume helped establish the modern scientific approach to knowledge, Descartes' own 
ultimate interest was elsewhere, namely the nature of human thought and what it is to 
know something-an interest reflected in his oft-repeated remark "I think, therefore 
I am. 

The science of mind 

Descartes believed that his method, the method of science and mathematics, could be 
applied to the inner world of the mind as well as to the outer world of the physical 
universe. He wrote, "The long concatenations of simple and easy reasoning which 
geometricians use in achieving their most difficult demonstrations gave me occasion to 
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imagine that all matters which may enter the human mind were interrelated in the 
same fashion." 

In large part because of the enormous influence Descartes had on the development 
of modern science-Newton, in particular, was influenced by him-Descartes' views 
have led to numerous attempts to develop 'mathematical sciences' of language and 
reasoning modeled on physics, attempts that continue to this day. The belief is that, 
once we have identified the right features-the equivalents of the length, mass, 
velocity, acceleration, force, momentum, inertia, and so forth of physics-we can 
develop a mathematical theoiy of language and/or reasoning that is every bit as 
rigorous and precise as physics. In such a science of mind, as much as in physics, 
mathematics will be both "maidservant and queen." 

It is within the Cartesian tradition that modern logic tries to capture in mathematics 
the patterns of reasoning, and to some extent the patterns of language required to 
formulate a logical argument. Key to such an approach is the assumption that the 
thinking mind can be studied in isolation, free from context. However, it was only 
after Descartes that this approach became the dominant one. Prior to the seventeenth 
century, logic was regarded largely as an aspect of rhetoric-a study of how one 
person's argument could convince another. That was certainly the way Aristotle 
regarded logic. Plato disagreed, condemning the use of rhetoric as "making the worse 
arguments appear the better," but it was Aristotle's view that predominated. And it 
continued to do so until Descartes advocated Plato's context-free, 'isolationist' ap- 
proach in the seventeenth century. For Descartes, the only knowledge worth pursuing 
was that which could be expressed by eternal, context-free, precise rules that captured 
general patterns. 

Underlying the Cartesian approach to the study of reasoning is Descartes' view that 
the mind and the brain-body are separate entities. For Descartes, the mind was an 
abstract entity that resides in the physical brain, and mathematics can be used to 
explain the workings of that abstract mind. 'Dualism' is the name given to this 
fundamental separation of mind from body. For the student of language and reasoning 
who works in the dualist tradition, there are two distinct domains, the subjective, 
internal world of the mind, and the external world, an objective reality made up of 
things that bear properties and stand in relations to one another. It is assumed that 
there are objective facts about the external world that do not depend on the 
interpretation-or even the existence-of any person. We make our way in the world 
by acquiring information about those things and constructing an internal representa- 
tion or 'mental model' of the external world. Thinking is a process of manipulating 
those internal representations. Cognition is based on the manipulations of the internal 
representations. Language is a system of symbols that are composed into patterns that 
stand for things in the world. 

One of the major puzzles that arise from the dualist view of the world is the 
so-called 'mind-body problem': how can our abstract, internal thoughts and intentions 
about action cause the physical motion of our bodies? 

So deeply rooted has Descartes' dualist view become in present-day science-and 
indeed in much of our present-day world view-that until veiy recently, not only was 
it widely believed that it was only a matter of time before familiar-looking, mathemati- 
cal sciences of reasoning, language, and communication are developed, but any theory 
-of cognition, language, society, or whatever-that does not fit the expectations of 
Cartesian science runs the risk of being dismissed, at least by scientists, as 'not 
completely respectable.' 

However, despite its extensive and pervasive acceptance, in recent times a number 
of philosophers have seriously challenged Cartesian dualism-Husserl, Heidegger, 
Ricoeur, Gadamer, Merleau-Ponty, Sartre, Mead, Dewey, Habermas, Wittgenstein, 
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Dreyfus, and others. So too have a number of biologists and neuroscientists, among 
them Maturana, Varela, and Damasio. Within the last decade or so, some leading 
figures in the computer world have also begun to question the Cartesian view on 
which much of computer science is based: Winograd and Flores with their 1987 book 
Understanding Computers and Cognition [11], Lucy Suchman with her book Plans 
and Situated Action [8], which also appeared in 1987, and others. 

One of the first people to try to move away from the dualist position was the 
German philosopher Martin Heidegger. In his book Being and Time [5], published in 
1927, Heidegger investigated the subject known as 'phenomenology,' introduced 
earlier by Husserl, which seeks to understand the foundations of everyday experience 
and action. Phenomenology challenges some of our basic assumptions about ourselves 
and the world. According to Heidegger, it is wrong to adopt a simple objective stance, 
where the primary reality is an objective physical world, and it is likewise wrong to 
take a simple subjective stance, where your thoughts and feelings are the primary 
reality. Rather, neither can exist without the other, and you have to consider both 
together, as a single whole. In your normal, everyday life, says Heidegger, you do not 
adopt a detached, 'rational' view of what you do; you simply act. If you think about 
your actions in a detached, rational way at all, you do so 'after the event,' perhaps 
because something 'went wrong' and you decide to reflect on what you did. Since this 
is the way we actually experience the world, moment-to-moment, Heidegger insists, 
the detached Cartesian view is misleading and, far from leading to a deep understand- 
ing of our existence and our actions, will in fact prevent us from achieving an 
adequate understanding. 

For instance, we approach every situation from a prior context that inescapably 
shapes and prejudices the way we encounter and react to that situation. Because this 
is how things always are, because we are never in the position of a completely 
detached observer with no prior experiences-we are never a clean slate if you 
like-we should not regard prejudice as a condition that leads us to interpret the 
world falsely. Our prior experiences are a necessary condition for us to interpret the 
world at all. Interpretation is always relative to prior experiences. Trying to strip away 
all context is an investigative strategy that can lead to a way of understanding ourselves 
and the world that may, on occasion, be useful. However, we should not confuse this 
investigative strategy with the way things 'really are.' 

Coming from a very different intellectual background, the biologist Humberto 
Maturana argues that the dualist view of cognition obscures its complex biological 
nature, and in so doing creates a misleading view of thought and communication. In 
their 1980 book Autopoiesis and Cognition [6], Maturana and his student Francesco 
Varela describe living systems (such as organisms) in terms of 'autopoiesis,' a technical 
notion introduced by Maturana to describe the way the different parts of a living 
system interact to produce what we call life. Rather than view the system as 'acquiring 
information' by forming an internal representation, they argue, we should concentrate 
on the ongoing changes to the system brought about by constant interaction with the 
environment. Communication between two such systems should not be regarded as a 
'transmission of information' but a form of coupling between them. 

For Maturana, it is misleading to think of a single, isolated 'state' of an autopoietic 
system. You have to consider both its environment and its history. In particular, the 
mind cannot be understood in isolation from the body, a point discussed further in the 
book The Embodied Mind [10], written by Varela, Thompson, and Rosch, and 
published in 1991. 

The year 1991 also saw the appearance of the book Consciousness Explained [2], by 
the philosopher Daniel Dennett, in which he argues against the view of consciousness 
as a so-called 'Cartesian theater' in which an 'inner self' observes external events 
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played out before us in the mind like the action on a stage. Dennett presented 
arguments to show that the phenomenon of consciousness can only be understood by 
looking at the way the components of a complex system interact with each other over 
a period of time. 

Another recent 'attack' on Cartesian dualism comes from the neurologist Antonio 
Damasio. In his 1994 book Descartes' Error [1], he argues that the emotions play a 
crucial role in human reasoning. While he acknowledges that allowing the emotions to 
interfere with our reasoning can lead to irrational behavior, Damasio presents evi- 
dence to show that a complete absence of emotion can likewise lead to irrational 
behavior. Damasio's evidence comes from case studies of patients for whom brain 
damage-either by physical accident, stroke, or disease-has impaired their emotions 
but has left intact their ability to perform 'logical reasoning,' as may readily be verified 
by using standard tests of logical reasoning skill. Take away the emotions and the 
result is a person who, while able to conduct an intelligent conversation and score 
highly on standard IQ tests, is not at all rational in his or her behavior. Such people 
will often act in ways highly detrimental to their own well being. Damasio's evidence 
shows that, when taken to its extreme, the Cartesian idea of a 'coolly rational person' 
who reasons in a manner unaffected by emotions is an oxymoron. Truly emotionless 
thought leads to behavior that by anyone else's standards is quite clearly 'irrational.' 

And there is more of the same from other sources. It is all relatively new, and 
almost all controversial. Science never provides 'right' answers. At most a scientific 
theory might gain universal or almost universal acceptance among the scientific 
community as 'the best explanation available at the time.' With science in the making, 
controversy is far more common than agreement. In the case of investigations into 
human rationality, so deeply is the dualist view ingrained in the psyche of twentieth 
century Western Man that any theory that challenges that view will have a hard time 
of it. But for all that we may rail against it in much the same way that our ancestors 
could not accept that the earth was not flat, the evidence continues to mount that the 
answers to the age old questions concerning the nature of thought, communication, 
and action will not be found until we go beyond the boundaries imposed by the legacy 
of Descartes. 

Time to leave the Omega 

The contemporaiy philosopher Stephen Toulmin, in his book Cosmopolis [9], likens 
the course of post-seventeenth century human thought to the Greek letter Omega, fl. 
He writes: 

The formal doctrines that underpinned human thought and practice from 
1700 on followed a trajectory with the shape of an Omega, i.e. "f." After 
300 years we are back close to our starting point. Natural scientists no 
longer separate the "observer" from the "world observed," as they did in 
the heyday of classical physics. ... Descartes' foundational ambitions are 
discredited, taking philosophy back to [that of an earlier era]. (Page 167, 
emphasis in the original.) 

The Cartesian approach-with its pinnacle role for mathematics-was extremely 
successful. It led to all of today's science and technology. These days, natural science 
is often referred to as 'Cartesian science.' Its success motivated attempts to adopt the 
same approach to the study of mind and language. For instance, the linguist Noam 
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Chomsky used the term 'Cartesian linguistics' to refer to the mathematically-based 
analysis of language he developed in the 1950s. And Descartes' philosophy lay behind 
three decades of immense efforts to develop artificial intelligence. But the veiy 
success of Cartesian science has led us around the loop of the Omega. Our inability to 
develop mathematically-based, Cartesian theories of mind and language and to endow 
machines with 'intelligence' (see Dreyfus [4]) has forced us to abandon the Cartesian 
approach and go back to the view advocated by Aristotle. If we want to understand 
reasoning and communication, we cannot consider them in isolation. We have to 
consider the context-the context where a person reasons and the context wlhere two 
people communicate. And that means that mathematics cannot go it alone. At the very 
least, we have to consider the mental and social contexts, which means that the 
methods of sociology and psychology will be required. And maybe we have to consider 
the physical context as well, the fact that the brain is a physical organ in our bodies, 
requiring the contribution of the neuroscientists. In any event, it is time to leave the 
Omega. We need to say goodbye to Descartes. 

This is hardly a new cry. The same suggestion was made by the mathematician 
Blaise Pascal while the ink on Descartes' page was barely dry. The following words, 
taken from Pascal's book Pense'es, published in 1670, provide an excellent way to close 
and bid a fond farewell to Descartes. Perhaps. 

The difference between the mathematical mind and the perceptive mind: 
the reason that mathematicians are not perceptive is that they do not see 
what is before them, and that, accustomed to the exact and plain principles 
of mathematics, and not reasoning till they have well inspected and 
arranged their principles, they are lost in matters of perception where the 
principles do not allow for such arrangement. ... These principles are so 
fine and so numerous that a veiy delicate and very clear sense is needed to 
perceive them, and to judge rightly and justly when they are perceived, 
without for the most part being able to demonstrate them in order as in 
mathematics; because the principles are not known to us in the same way, 
and because it would be an endless matter to undertake it. We must see 
the matter at once, at one glance, and not by a process of reasoning, at 
least to a certain degree. ... Mathematicians wish to treat matters of 
perception mathematically, and make themselves ridiculous . . . the 
mind ... does it tacitly, naturally, and without technical rules. 
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The fact that an indefinite integral is a set of functions is often ignored, perhaps 
because of the apparent simplicity of the situation. However, if we regard 

rdx cos x or f. dx 
J x or J sin x 

as functions, we can easily develop fallacious proofs of such "identities" as 0 = 1. 
In this note we introduce a semigroup operation on the set of all nonempty subsets 

of a vector space. Then we indicate how the indefinite integral can be viewed as a 
set-valued function (or multiftinction) and how this point of view avoids the fallacies 
mentioned above. Finally, we show how the multifunction given by the indefinite 
integral induces a linear function on the space of continuous functions. 

Algebraic set operations Let X be a vector space over the real numbers, and let 
P(X) denote the family of all nonempty subsets of X. We define addition and scalar 
multiplication on the family P(X) by 

A + B ={a + b:a E A, b E B} 

and 

aA = {aa: a EAl 

where A, B E P(X) and a e ER. In particular, A - B = A + (- 1)B. These are called 
algebraic set operations. Notice that (P(X), +) is not a group if X 0 {01. Indeed, {01 
is the neutral element in (P(X), +), and for every A e P(X) 

A +X=X, 

so X has no inverse element. The operation + is associative and commutative. The 
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following properties of the operations hold 

a( 13A) = (a13)A (1) 

a(A+B)=aA+aB (2) 
1A=A. (3) 

The inclusion 

(a +,3) A c aA +f,A (4) 

holds, but the opposite inclusion need not hold. (Setting X = R, A = {-1, 11, and 
a = 13 = 1 gives a counterexample.) Other properties of algebraic set operations 
include the following, where A, B, C C P(X) and a e R: 

O CA-A (5) 

(O E A and A + B C C) =B c C (6) 

a 0O ( A c B <- aA c aB) (7) 

A+BcC= BcC-A (8) 

A=B =AA+C=B+C. (9) 

The converse to (8) does not hold, as shown by the example A = B = X and 
C = {0}. For X = , A = [0, 1], B = {1}, and C = [1, 2] we have A + B = C and 
B 0 C-A. Thus, in general, A + B = C does not imply B = C-A. 

Some formulae, that do not hold in the general case, do hold for convex sets. A set 
A C P(X) is convex if for every a, 13 c R such that a ? 0, 13 2 0, and a + 13 = 1, 

aA + ,1A cA. 

The converse implication to (9) need not hold in general (e.g., A 0 X and C = X). 
However, if X is a normed vector space, B is closed and convex, and C is bounded, 
then (see, e.g., [2, Lemma 1]) 

A + C cB + C => A cB. 

Let A be a convex set, a > 0 and / > 0; then 

a A + 13 A cA. 
a +13 a +13 - 

From (7) and (2) we get aA + 13 A c (a + 13) A, and by (4), 

aA + 13A = (a + 13) A. 

In particular, if A is convex then 

A + A = 2 A. 

A subset C of X is a subspace if for all a, 13 c R 

aC+13CcC. 

Now, for fixed x E X, the subset {x} + C is called an affine subspace (flat) parallel to 
C. A flat is a convex set. If C is a subspace of X and L is a flat parallel to C, the 
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following algebraic properties are easily proved: 

C+C=C (10) 

L-L=C (11) 

a* O== aC=C (12) 

C - C = 0 (13) 

A cC =-A +C = C (14) 

A cC =A +L =L. (15) 

For more on algebraic operations with convex sets, see [3]. 

Indefinite integrals Let I c R be an interval, C(M) the vector space of all 
continuous real functions on I, Cl(l) the subspace of all continuously differentiable 
functions, and C the subspace of all constant functions. A differentiable function p is 
a primitive function of f if 'p' =f holds. The set of all primitive functions of f is 
called the indefinite integral of f, and denoted by 

ff= {(p: ('p =f} 

Let f,g C() and ae c R; then 

(16) 

c=ff- f (17) 

+g = f+ g (18) 

O f If O f (19) 

0e ff ff={40}+c (20) 

a*O=.faf=af (21) 

A CC = ff+A= f (22) 

feC'l()=ff' ={f}+C (23) 

u, v E C(I) = uv' = {uv}- u'v. (24) 
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We prove the properties (18) and (24); the others have similar proofs. For (18), let 
0p C ff and &c- fg; then ff + fg = (Q'pj + C) + (Q/il + C). By the commutative and 
associative laws and (10), we have 

ff+fg={ p+ q} +C. 

Since ('p + q&)' =f+ g, (20) shows that 

f+ fg = f(f+g). 

To deduce (24), the formula for integration by parts, let 'p E fuv'. Then ''= 

(uv)' - u'v. Since f(uv)' - u'v ={uv} - fu'v we have p E {uv}-fu'v, so fuv' c 
{uv} - fu' v. Conversely, if p c {uv} - fu' v there exists a function /i c fu' v such that 
'p = uv - i&. Since p' = (uv)' - u'v = uv', we have 'p c fuv', so {uv} - fu'v c fuv'. 

Note that, by (20), If is a flat, so (11) implies (17). 

Example 1. Let I = (0, 7r) and for x c I, f(x) = cos x/sin x. Let J = Jf. Using 
integration by parts, where u(x) = 1/sin x and v(x) = sin x, we get J = 1 +J. 
Failure to notice that an indefinite integral is a set leads to the fallacious conclusion 
that 0 = 1. However, from (24) we have J = {uvl + J where uv c C. Therefore, by 
(22), J=J. 

A mistake can also be made in calculating integrals when incorrect set formulae are 
used. For example, from the "equality" 

J =u(x)v(x) -J 

one might conclude that 2J = u(x)v(x), which is also incorrect. 

Example 2. Let I = R, f(x) = ex sin x, and g(x) = ex(cos x - sin x). Using (24) we 
get 

If={gl -Iff 

Clearly, {g} 0 2ff. However, ff= {g} - Jf implies, by (9), that 

ff+ff= {g} + (ff-ff) 

Therefore 

2 ff={g} +C, 

and, by (7) and (12), 

ff= ( g1)} + C. 

The antiderivative multifunction Let X and Y be Banach spaces. A multivalued 
function (or simply a multifunction) F: X -> P(Y) is called convex if its graph 

grF = {(x, y) EX x Y: y E F(x)} 
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is a convex set. This is equivalent to ti condition that 

aF( xl) + 3F(X2) CF(axj + f3x2) 

for all x1, x2c X, and all a?O0, 13?0 with a(+ 13= 1. 
We say that F is closed on X if gr F is a closed set in the product topology on 

X X Y. This is equivalent to the condition that Xk ;> x, Yk -> Y, Xk C X, and Yk E F(xk) 
implyy cy Fx). 

Le Van Hot [1, Theorem 2] has proved that if X and Y are Banach spaces and F: 
X -> P(Y) is a convex closed multifunction such that dom(F) = X and F(xO) is 
bounded for some xo c X, then there exists a unique linear single-valued function T: 
X -> Y such that 

F( x) = F(O) + T( x). (25) 

Without the assumption that F(xo) is bounded for some xo c X, the conclusion of 
Le Van Hot's Theorem is not true. Consider, for example, the multifunction F: 
X -> P(Y), given by F(f) = ff, where X = Y = C([O, 1]). Note that C([O, 1]) is a 
Banach space with 

lIf II = max{lf(x) |: x E [0,1]}. 
By (18) and (21), F is a convex function. Also, F is closed by the uniform convergence 
and differentiation theorem [4, Theorem 7.17]. By (16), we have 

dom(F) = {fe X: F(f ) 0 o} = C([O, 1]). 
However, F(f) is unbounded for each f C C([O, 1]). In this case the formula (25) 
becomes 

f= fO+{T(f)} (26) 

or, equivalently, 

f= {T(f)} + C. 

If we let T: C([O, 1]) -> C([O, 1]) be the linear function given by 

T(f)(x) = p(x) - 40(c) 
where 'p c ff and c is any number in [0, 1], then (26) holds. However, T is not 
unique. 
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Introduction The stoiy behind this article begins in a classroom, with a presenta- 
tion intended to show that the dihedral group D6 of symmetries of the hexagon can be 
realized as a group of invertible 2 X 2 matrices with real number entries. Two 
matrices that can be used to generate this group are 

R=(1 j) and F ( nj) 

R has multiplicative order six and F has order two. There is geometric motivation for 
this choice of generators. As in FIGURE 1, picture a regular hexagon centered at the 
origin; highlight two of its adjacent radii (vl and V2 in FIGURE 1). Regard these radii as 
vectors, to form a basis for R2. Relative to this basis, the matrix R (for "rotation") 
represents a counterclockwise rotation through 60?, while F (for "flip") corresponds 
to a reflection of the hexagon through the y-axis. 

The set of matrices {F 'Ri ji = 0, 1; j = 0, 1, . . ., 5) forms a group isomorphic to D6. 
Familiar relations, such as FRF = R- 1, can either be checked by multiplying matrices 

FIGURE 1 
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or interpreted geometrically. An interesting and attractive feature of this representa- 
tion of a non-abelian group of order 12 is that all of the matrices have integer entries. 

Seeing this, a student wondered whether the alternating group A4, another 
non-abelian group of order 12, could also be written using integer matrices of size 
two. I suspected that the answer to this question was well-known, though, sadly, at 
that moment not by me. Some instinct suggested to me that no such representation 
was possible, but this was far from proof. To save face, I pointed out that a similar 
question could be posed for D4, the group of symmetries of the square. Indeed, 
elementary arguments show that D4 can be represented using 2 X 2 integer matrices. 
Can the quaternion group, the other non-abelian group of order 8, also be written this 
way? Better yet, what are all the finite groups that can be realized using two by two 
integer matrices? 

Some exploration in the libraiy soon revealed that the possibilities for groups 
admitting such presentations can be narrowed quite quickly-provided one knows 
some basic results in the theoiy of group representations and about degrees of 
primitive roots of unity over the rationals [3]. There remained, then, the challenge of 
answering the question using only elementaiy means-say, those available after one 
semester each of linear and abstract algebra. What follows is an attempt to meet this 
challenge; an interesting mix of group theory and linear algebra appear along the way. 

For any finite group G admitting a matrix representation of the type at hand, the 
subgroup G+ of integer matrices of determinant 1 will play a fundamental role. The 
finite group SL(2, 3) of 2 X 2 matrices of determinant 1 with entries in Z3, the field 
with three elements, will prove equally important. In fact, we will show that any such 
G+ must be isomorphic to a subgroup of SL(2, 3). We will use elementary techniques 
to find all of the subgroups of SL(2, 3), a non-abelian group of order 24. In the 
process, we will find all possible candidates for a G+. Once G+ is known, the 
structure of the full group G will be easy to determine. 

Elements of finite order in GL(2, 7) We denote by GL(2, 7) the group of 
invertible 2 X 2 integer matrices whose inverses also have integer entries. We seek to 
classify the finite subgroups of GL(2, 7). If both a matrix A and its inverse have 
integer entries, then, necessarily, det A = + 1, since det A-' = 1/(det A). The subset 
SL(2, 7) of matrices of determinant 1 is a normal subgroup of index two in GL(2, 7). 

If a matrix A E GL(2, 7) has order n, then A"1 = I (the identity matrix), so the 
eigenvalues of A must be nth roots of unity. We claim that such an A must be 
diagonalizable. If not, then A must have a repeated eigenvalue, say A. Let v be an 
eigenvector of A with eigenvalue A, and choose any vector tv so that {v, tv} is a basis 
for the complex vector space C2. Relative to this basis, the matrix of the linear 
transformation determined by A is of the form 0 b ), for some complex numbers a 
and b, with a 0 0. Because the characteristic polynomial of A is (x - A)2, we see that 
b = A. Direct computation of powers shows that the matrix (0 A), which is similar to 
A over C, has infinite order. But A has finite order, so we have a contradiction. (A 
shorter but less elementary proof can by given by appealing to the Jordan canonical 
form.) 

One consequence of diagonalizability is that if A has order 2, and det A = 1, then 
A must be the matrix ( - ) . In other words, SL(2, Z) has a unique element of 
order 2. Suppose that A has order greater than 2. Since 1 and -1 are the only 
complex roots of unity which are also real and A2 2 I, at least one eigenvalue, A, of A 
is not real. Moreover, since the characteristic polynomial of A has integer (and 
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therefore real) coefficients, the eigenvalues of A must be complex conjugates A and 
A, with AA = 1. But the product of the eigenvalues of a matrix is its determinant, so 
det A = 1. Thus every element in GL(2, 7) of order greater than 2 has determinant 1. 

Reduction mod 3: a mapping into SL(2, 3) Our goal is to classify finite subgroups 
G of GL(2, 7). For any such G, G+, the subset of elements of determinant 1 in G, is a 
subgroup of G, with index either 1 or 2. Since G+ is a finite subset of SL(2, Z), it is 
tempting to reduce the elements of G+ mod p, for various primes p. The groups 
SL(2, p), for p prime, are finite counterparts of SL(2,7); each consists of 2 X 2 
matrices of determinant 1 over p, the integers mod p. The natural projection from / 
to ZP extends to a homomorphism from SL(2, Z) into SL(2, p); it will prove useful to 
examine the image of G+ under such a mapping. Indeed, the case p = 3 provides a 
wealth of information. 

Suppose that the matrix A, A # I, is in the kernel of the mapping G+ -* SL(2, 3). 

Since ( - ), the unique matrix of order two, is not congruent to the identity mod 
3, A must have order greater than 2. Also tr( A), the trace of A, must be an integer 
with tr A 2 (mod 3). But the eigenvalues of A are co and co, where co is a (non-real) 
nth root of unity, so Itr( A)I = I co + c3I < I coI + I c3I = 2. The only possibility, therefore, 
is tr( A) =-1, and it follows that A has the form A = - 1b a)' for some integers 
a, b, and c. Now, b c 0 (mod 3) since A is in the kernel of the mapping, and so 
bc must be divisible by 9. Because A is in GC, -a(l + a) - bc = 1. This relation, 
taken mod 9, yields a2 + a + 1 0 (mod 9); a direct check shows that no such integer 
a exists. We have established the following result. 

THEOREM 1. Let G be a finite subgroup of GL(2, 7) and let GC= G n SL(2, 7). 
Then the mappingfrom G+ to SL(2, 3) is an injective homomorphism. 

Thus G+ is isomorphic to a subgroup of SL(2, 3), so the latter group merits a closer 
look. 

The order of SL(2, 3) We will compute the order of SL(2, p) for any prime p, and 
then specialize to p = 3. Clearly, SL(2, p) is a subgroup of GL(2, p), the full group of 
invertible 2 X 2 matrices with entries in Zp. For any prime p, the orders of GL(2, p) 
and SL(2, p) are related by ISL(2, p) = ICGL(2, p)I/(p - 1). This can be seen by 
applying the fundamental theorem of group homomorphisms to the mapping 
4: GL(2, p) -* Zp, given by +(A) = det(A) mod p, where Z* is the multiplicative 
group of non-zero elements of /7 (Zp has order p - 1). The kernel of 0 is SL(2, p). 

The order of GL(2, p) can be found by a direct count. A matrix in this group can 
have any of the (p2-1) non-zero vectors in Zp as its first column; the second column 
can be any vector other than one of the p multiples of the first column-a total of 
p2 - p choices. This shows that IGL(2, p)I = ( p2 _ 1)( p2 - p); therefore ISL(2, p)I = 
p( p2 - 1). In particular, SL(2, 3) has order 24. 

SL(2, 3) and its subgroups We now proceed to find the subgroups of this group. 

LEMMA. 

(1) SL(2, 3) contains a unique element of orcler 2. 

(2) T = ((I a) a E Z3} is a subgroup of order 3. Its normalizer, N(T), is a cyclic 
group of order six. 

(3) SL(2, 3) contains a subgroup of order 8 isomorphic to the quaternion group. 
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Proof. The argument used above to show that SL(2, 7) has a unique element of 
order two can be used here to establish (1). 

In (2), T is clearly a subgroup of order 3. Direct computation shows that elements 
of N(T) must be of the form (0b ,) where a E 73 and b is either 1 or -1. The 

matrix (- ) has order six and generates N(T). 

For (3), let A = ( _ and B = ( 1 ). Direct calculation shows that A and 

B have order 4, A2 = B2 = -1 ) (the unique element of order two), and 
BAB' = A'. Thus A and B generate a quaternion group of order 8. 

Let T be defined as in the Lemma. In any finite group, the number of conjugates 
of a subgroup is the index in the group of the normalizer of the subgroup (for 
example, see [4, p. 52]). Since N(T) has index 4 in SL(2, 3), the subgroup T has four 
distinct conjugates T1, . . ., T4 in SL(2, 3). The normalizers of these four conjugates of 
T yield four distinct cyclic subgroups of order 6: Si = N(T), i = 1,. . . ,4. Each S, 
contains the unique element of order two and a single subgroup of order three. Thus, 
if ioj, IsilnSl=2. 

These four subgroups of order six thus account for 18 elements of SL(2,3): 8 
elements of order 6, 8 elements of order 3, the single element of order 2, and the 
identity. The quaternion subgroup from the Lemma above contributes 6 elements of 
order four. We have now enumerated all 24 of the elements of SL(2, 3). In particular, 
SL(2, 3) contains no elements of order 8 or 12. We can now describe the subgroup 
structure of SL(2, 3). 

THEOREM 2. SL(2, 3) contains 

(1) no subgroup of order 12; 
(2) a unique subgroup of order 8 (isomorphic to the quaternion group); 
(3) no non-abelian subgroup of order 6; 
(4) cyclic subgroups of orders 3, 4, and 6; 
(5) no subgroup isomorphic to Klein's four group'; 
(6) a unique subgroup of order 2. 

Proof. Let a be the unique element of order two in SL(2, 3). Suppose there were a 
subgroup H of order 12. Since H has even order, H must contain a [4, p. 17, Ex. 
2.18]. Since H has index 2, it must contain the square of any element in SL(2, 3). If 
A is any element of order 3, then A is a square since A = A4 = ( A2)2. Thus, H must 
contain all eight elements of order 3. Since a commutes with elements of order 3, 
multiplying them by a produces 8 more elements of order 6 in H. This places at least 
seventeen elements in H-a contradiction. 

To establish (2), recall that SL(2,3) contains only one element of order 2, no 
element of order 8, and 6 elements of order 4. Thus, any subgroup of order 8 must 
contain the six elements of order 4 that generate the quaternion subgroup of the 
Lemma. Assertions (3), (5) and (6) follow from the fact that SL(2, 3) contains only one 
element of order 2. We have established (4) above. 

Observe that our analysis of subgroup structure did not require use of the Sylow 
theorems. 

'Named after the mathematician Felix Klein, this is the non-cyclic group of order four and is isomorphic 
to Z2 X /2- 

This content downloaded from 150.108.161.71 on Thu, 1 Aug 2013 00:13:19 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


360 MATHEMATICS MAGAZINF 

The finite subgroups of GL(2, Z) There are only two non-cyclic subgroups of 
SL(2, 3): the quaternion subgroup of order 8 and SL(2, 3) itself. If G is a finite 
subgroup of GL(2, 7), we have seen that G+ is isomorphic to a subgroup of SL(2, 3). 
We now show that G+ must be cyclic. 

Suppose, instead, that G + is isomorphic to the quaternion group of order 8. To 
derive a contradiction, we reduce G+ mod 2, producing a homomorphism cP: 
G + -* SL(2, 2). Since SL(2, 2) has order 6, the kernel of 0 must contain an element, 
A, of order 4. As we observed earlier, the eigenvalues of A are i and - i (two of the 
complex fourth roots of unity). Thus, A has trace zero, and so must be of the form 
( b) for some integers a and b. Now, b c 0 (mod 2) since A is in the kernel 
of the mapping, so bc is divisible by 4. Since A has determinant 1, - a2 - bc = 1. It 
follows that a2 - 1 (mod 4). This is impossible, since the square of every odd 
integer is congruent to 1 (mod 4). 

The same argument rules out the possibility that G+ is isomorphic to SL(2,3), 
since such a G+ would have a subgroup isomorphic to the quaternion group of order 
8. Theorem 8 says, therefore, that G+ must be isomorphic to one of the groups 

C1, C2, C3, C4, or C6, 

where Ci denotes the cyclic group of order i. 
The structure of G itself now follows readily. Our earlier discussion shows that, 

among elements of finite order in GL(2, 7), only elements of order two have 
determinant - 1. If G+C G, then G+ has index 2 in G. Let x be an element of G 
that is not in G+. Then all the elements of the coset G+x must have order 2, since 
they are matrices of determinant - 1. In particular, if y is a generator of the cyclic 
group G+, then yx must have order 2. Thus, ( yx)( yx) = 1 and xyx'- = y-l; in other 
words, conjugating by x inverts G+. This means that G must then be isomorphic to 
one of the dihedral groups 

D1, D2, D3, D4, orD6. 

Since all the groups C, and Di above are subgroups of one of the dihedral groups 
D4 or D6, and since (as noted at the outset) both D4 and D6 can be written using 
integer matrices, we can summarize our results as follows. 

THEOREM 3. A finite group G can be represented as a group of invertible 2 X 2 
integer matrices if and only if G is isomorphic to a subgroup of D4 or D6. 

Conclusion A more economical presentation could be achieved by using the Sylow 
theorems in analyzing SL(2,3), and by noting that the minimum polynomial of an 
element of finite order n in GL(2, Z) must be divisible by the minimal polynomial 
over the rationals of a primitive nth root of unity. A famous theorem due to Gauss 
asserts that the degree of a primitive nth root of unity over the rationals is +(n), 
where k is Euler's totient function. In our situation, +(n) = 1 or 2; this forces n = 1, 
2, 3, 4, or 6. 

The results above are related to a geometric result called the crtystallographic 
restriction, which arises in classifying symmetry groups of crystals (see e.g., 
[1, p. 151]). This restriction says that the only rotations admitted by lattices in 
dimensions 2 or 3 are those through angles 21T/n, where n = 1, 2, 3, 4, or 6. Indeed, 
given a matrix A of the type under consideration, of order n > 3, we have seen that 
the eigenvalues of A are precisely e'o and e ̀ 0, with 0 =2lrm/n and m and n 
relatively prime. But the rotation matrix R = (s 0 -sin O) has exactly the same two 
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distinct eigenvalues. Thus A and R are similar over the complex numbers, and hence 
also over the real numbers ([2, p. 158]); i.e., CA = RC for some invertible real matrix 
C. The columns of C can be viewed as the basis of a two dimensional lattice L. Since 
A has integer entries, the relation RC = CA shows that rotating lattice vectors 
through angle 0 produces vectors that are integer linear combinations of a basis of L. 
So the lattice L admits a rotational symmetry and the crystallographic restriction can 
be invoked to reveal the possible values of n. 
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To perform a perfect riffle shuffle, or faro shuffle, on a deck of 2n cards, you cut the 
deck into two stacks of n cards and interlace them perfectly. This can be done in two 
ways. If the shuffle leaves the top card on top, it is called an out shuffle. If the shuffle 
moves the top card into the second position, it is called an in shuffle. 

Perfect shuffles have been of great interest to a wide variety of people for a long 
time. We have seen references to books on card cheating that described the perfect 
shuffle back in the eighteenth century. Magicians use perfect shuffles in card tricks 
(see Marlo [7] and [8]), and computer scientists use them in parallel processing (see 
Stone [12] and Chen, et al. [3]). 

For the mathematician, perfect shuffles provide a deep and complex structure from 
a very simple and natural setting. Mathematics literature on the perfect shuffle ranges 
from the recreational and nontechnical in Gardner [5], Ball and Coxeter [2], Adler [1], 
Herstein and Kaplansky [6], and Rosenthal [11] to the very sophisticated work of 
Diaconis, Graham, and Kantor [4] where the group generated by the in and out 
shuffles is determined. Generalizations of the perfect shuffle provide more grist for 
the mathematical mill in Morris and Hartwig [10], and Medvedoff and Morrison [9]. 

Moving cards to desired positions through perfect shuffles is of interest to magicians 
and card cheaters because perfect shuffles appear to be random but are not. It has 
long been known, and easily proved [4], that the top card can be moved to position j 
(the top card is in position 0) through a sequence of in and out shuffles determined by 
the base-two representation of j. Reading the base two digits from left to right, simply 
perform a shuffle for each digit: an in shuffle for a 1 and an out shuffle for a 0. The 
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distinct eigenvalues. Thus A and R are similar over the complex numbers, and hence 
also over the real numbers ([2, p. 158]); i.e., CA = RC for some invertible real matrix 
C. The columns of C can be viewed as the basis of a two dimensional lattice L. Since 
A has integer entries, the relation RC = CA shows that rotating lattice vectors 
through angle 0 produces vectors that are integer linear combinations of a basis of L. 
So the lattice L admits a rotational symmetry and the crystallographic restriction can 
be invoked to reveal the possible values of n. 

Acknowledgment I would like to thank the referee and the editor for many helpful comments. 

REFERENCES 

1. M. A. Armstrong, Groups and Symmetry, Springer-Verlag, New York, NY, 1988. 
2. R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, UK, 1985. 
3. M. Newman, Integral Matrices, Academic Press, New York, NY, 1972. 
4. J. J. Rotman, An Introduction to the Theory of Groups, 3rd ed., Allyn and Bacon, Boston, MA, 1984. 

Moving Card i to Position j with Perfect Shuffles 

SARNATH RAMNATH 
Dept. of Computer Science 

DANIEL SCULLY 
St. Cloud State University 

St. Cloud, MN 56301-4489 

To perform a perfect riffle shuffle, or faro shuffle, on a deck of 2n cards, you cut the 
deck into two stacks of n cards and interlace them perfectly. This can be done in two 
ways. If the shuffle leaves the top card on top, it is called an out shuffle. If the shuffle 
moves the top card into the second position, it is called an in shuffle. 

Perfect shuffles have been of great interest to a wide variety of people for a long 
time. We have seen references to books on card cheating that described the perfect 
shuffle back in the eighteenth century. Magicians use perfect shuffles in card tricks 
(see Marlo [7] and [8]), and computer scientists use them in parallel processing (see 
Stone [12] and Chen, et al. [3]). 

For the mathematician, perfect shuffles provide a deep and complex structure from 
a very simple and natural setting. Mathematics literature on the perfect shuffle ranges 
from the recreational and nontechnical in Gardner [5], Ball and Coxeter [2], Adler [1], 
Herstein and Kaplansky [6], and Rosenthal [11] to the very sophisticated work of 
Diaconis, Graham, and Kantor [4] where the group generated by the in and out 
shuffles is determined. Generalizations of the perfect shuffle provide more grist for 
the mathematical mill in Morris and Hartwig [10], and Medvedoff and Morrison [9]. 

Moving cards to desired positions through perfect shuffles is of interest to magicians 
and card cheaters because perfect shuffles appear to be random but are not. It has 
long been known, and easily proved [4], that the top card can be moved to position j 
(the top card is in position 0) through a sequence of in and out shuffles determined by 
the base-two representation of j. Reading the base two digits from left to right, simply 
perform a shuffle for each digit: an in shuffle for a 1 and an out shuffle for a 0. The 
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reverse problem of bringing any card to the top is probably of greater interest to the 
magician and is, in Martin Gardner's words, "much harder to analyze." Still quoting 
from Gardner's Mathematical Carnival: "Some attempts at efficient algorithms, 
combining shuffles of different types, have been proposed, but the problem is far 
from satisfactorily disposed of." 

We present a procedure for determining the shortest possible sequence of perfect 
in and out shuffles that moves a card from position i to position j in a deck of 2n 
cards. The procedure is easy and efficient (of order log n). Gardner's problem is 
solved as a special case by choosing the jth position to be the top of the deck (j = 0). 

Label the 2n positions in the deck 0 through 2n - 1 consecutively, with 0 
representing the top position. It is easy to see that the out and in shuffles move a card 
in position x to positions (x) and l(x), respectively, where 

(\f J2x mod2n if 0 <x <n 
(x) \(2x+1)mod2n ifn<x<2n 

and 

I( X) (2x+1)mod2n if0?x<xn 
' 2x mod2n if n?< x < 2n. 

Let D(x) = 2x and E(x) = 2x + 1, without any modding. The effects of the 
functions D and E on the base-two representation of x is clear. If the binary 
expansion of x is x = x1x2 ... Xk (all such expansions will be binaiy in this paper) then 
D(x)=x1X2 ... XkO and E(x)==xX2 ... Xk 1. 

We construct a binaly tree with root 0 that reflects all possible sequences of 
compositions of D and E applied to 0. Moving down the tree, a step to the left 
indicates the application of D, and a step to the right indicates E. Thus, as FIGURE 1 
shows, 0 is sent to 4 by applying E followed by two D's. 

0 

DF 

0 1 
D F D F 

A 

0 1/2 3 
D F D F DI \E D 

E 

0 1 2 3 /4 5 6 7 

/\ 

k 
0 1 . . . n-i n . . . 2n-1 2n . . . . 2-1 

O 1 2n-2 2n-12nt 2n+1 4n-2 4n-1 4n 4n+1 2 -2 2 -1 

FIGURE 1 
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It is clear that the integers that appear on the row of the tree that is t steps from 
the root are the consecutive integers 0 through 2t - 1 since the t-digit base-two 
representations of these numbers generated by D and E are 00 ... 0 through 11... 1. 
If j appears on the t-th level of this tree, then the path from the root labeled 0 to that 
vertex labeled j is revealed by the t-digit base-two representation of j. If j = lJ ... it' 
then the sequence F1, F2,..., Ft moves 0 to j, where Fk = D if jk = 0 and Fk = E if 
jk = 1. 

Similarly generated binary trees with different roots appear as subtrees of this one. 
FIGURE 1 illustrates how the tree with a root of 2 is such a subtree. On the subtree 
rooted at i, the t-th level down from the root consists of the consecutive integers 
Dt(i) = 2ti through Et(i) = 2t(i + 1) - 1. If j appears on the t-th level down from 
the root of this subtree, then the path from the root labeled i to that vertex labeled j 
is revealed by the t-digit base-two representation of j - Dt(i) =j -2ti as above. 

The introduction of modular arithmetic does not complicate matters much. Let 
D771( x) = 2 x mod 2 n and Em(x) = (2 x + 1) mod 2 n. The analogous tree using these 
functions is very similar to the previous one. FIGURE 2 illustrates how the integers 
along a row of this tree or one of its subtrees are consecutive from left to right, but 
2n - 1 is followed by 0, 1, 2 etc. This follows immediately from the fact that the 
mod2 n function from Z to Z2n is a homomorphism. 

0 

Drn~~~~~i 

01 
D X Xn Dill \\Xz 

0 12 3 

Din Em Dm Dm E1n Dil1 l 

0 1 2 3 4 5 6 7 

0 . . . n-1 n . . . 2n-1 0 

0 1 . . . 2n-2 2n-1 0 1** 2n-2 2n-1 0 1 
FIGURE 2 

Let i, j E 2n We can find the shortest sequence of D,,,'s and E,,,'s that sends i to 
j by simply constructing the subtree rooted at i until j first appears. The path from 
the root i to j determines the sequence of D,1,'s and E,,,'s. 

Constructing such a tree could be time-consuming if 2n is large. It is of order n. 
But it isn't necessary to construct the whole subtree. First, construct the two 
outermost paths of the subtree (D,11(i), D 2 (i), Dt(i) and E0(i), E 2 (i), E t(i)) 
until j falls in the interval [Dtn(i), Ert(i)]. (In Z2n, [a, b] = {a, a + 1. b} if a < b, 
and [a, b] = {a, a + 1. 2n - 1, 0, 1,... b if b < a.) The integer j first appears on 
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that level t of the subtree since the integers that appear along each level are 
consecutive. This is sure to happen in fewer than log2(2n) + 1 steps since, for any t 
larger than log2(2n), the width of the t-th level of the subtree exceeds 2n. Scanning 
the vertices on the t-th level of this subtree from left to right, j first appears 
(j - Dt(i)) mod 2 n vertices to the right of the first vertex. Therefore, the t-digit 
base-two representation of (j - DZt(i)) mod2n indicates the sequence of Din's and 
EM 's needed to get from i to j. A 0 indicates Din and a 1 indicates Em. 

Example. Find the shortest possible sequence of compositions of the functions Din 
and EM that takes i = 6 to j = 47 in Z52. 

Solution: We construct the outermost paths of the subtree rooted at 6. 

24 48 (4 = 96 nod 52) 
DX 

6 

13 -1 27 -7 3 - 7 
Our number 47 falls in the interval [44, 7] in Z52, and we had to apply the functions 
four times to get an interval that contains it. The difference (j - D 4(i)) mod 52= 
(47-44)mod52 = 3 = 0011 as a four-digit base two numeral, so the sequence 
Din, Dill, E.11, EMI does the trick. Checking, we see 

6 - - 12 - > 24 - 7 49 - 47. 

We are now a short step from solving our problem for card shuffling. Observe that 

f D..(x) if 0 <x n 

E,,X)\(x) if n <x <2n 

and 

fEJ(x) if 0 <x <n 
I( x) D,,,( x) if n < x < 2n. 

So, DMW(x) = &(x) in the top half of the deck and Djx,(x) = I(x) in the bottom half. 
The reverse is true for Em7. 

Working from the example above, the shortest sequence of in and out shuffles that 
will move card 6 to position 47 in a deck of 52 cards is &, &, I, &, since 

6 12 24 49 - 47. 

In the first three shuffles Din, = a and EM = 1, since the cards of interest are in the 
top half of the deck. But, in the last shuffle E,n translates to a since the card, 49, is in 
the bottom half of the deck. 

This proves and illustrates the following theorem. 

THEOREM. Label the positions in a deck of 2n cards 0 through 2n - 1 consecu- 
tiveltl with 0 representing the top position. To determine the shortest possible sequence 
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of perfect in and out shuffles that will move a card in position i to position j, proceed 
as follows: 

1. Calculate the sequences D,I9(i), Df2(i), D t (i) and Eji), E72(i), .Et(i) until 
j GD(), E t10()]. 

2. Let s = (j - DZt(i)) mod 2n and write s as a t-digit base two numeral SIS2 ... St 

3. Reading the digits SIS2 ... st fromn left to right, apply consecutively Din to i if Sk is 
0 and Em if Sk is 1. 

4. Make the translation Din if DM= is being applied to an integer in [0, 'n-1] and 
Din= I if applied to an integer in [n, 2n - 1]. Similarly, EM11 = I if in [0, n - 1] and 
Fin = & in [n, 2n - 1]. The resulting sequence of in and out shuffles (I's and &'s) 
moves the card in position i to position j in a minimum number of perfect shuffles. 

This procedure is general. It applies to a deck of any even number of cards, and it 
can be used to move any card in such a deck to any other position. It is easy and 
efficient to apply. It is of order log n. It can be used to move any card to the top of 
the deck by simply letting j = 0 in the theorem above. 
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Probabilities of Clumps in a Binary Sequence (and 
How to Evaluate Them Without Knowing a Lot) 

DAVID M. BLOOM 
Brooklyn College of CUNY 

Brooklyn, NY 1 1210 

1. Introduction When I was growing up in the 1940s and early '50s, my father, 
though a non-mathematician, encouraged my already strong interest in mathematics 
by bringing home books for me: problem and puzzle books, Hogben's Mathematics 
for the Million, Kasner and Newman's Mathematics and the Imagination, and others. 
In December 1985, when my son Eric and I visited him to celebrate his 80th 
birthday, we found that Dad hadn't changed his ways. He had picked up a copy of one 
of Martin Gardner's books (namely [1]), thinking that Eric and/or I might find in it 
items of interest. (Martin Gardner needs no introduction to most readers. He wrote 
regularly about mathematics for Scientific American magazine for many years and has 
written many books-some of them published by the MAA-about mathematical 
puzzles, curiosities, etc.) 

What happened next was this: Eric (then 10) took a look at [1], found in it the 
assertion (p. 124) that in an ordinary shuffled deck of 52 cards 

"there will almost always be a clump of six or seven [consecutive] cards of (0) 
the same color," 

took out a deck of cards and did the experiment, obtained no such "clump," and came 
to me for an explanation. Question: Did Eric witness an extremely unlikely occur- 
rence, or was [1] wrong? That is, 

In the case (m, k, t) = (26,26,6), what is the probability that, in a random 
string of m red and k black objects, some t consecutive objects have the (1) 
same color? 

Essentially the same problem, in a different guise, came to my attention more 
recently. In December 1992, I had to give a class test and a final exam in a required 
course for non-majors. To make it harder for a student to copy, I wrote two versions 
("odd" and "even") of each exam. At the class test, I gave out the two versions 
alternately according to where the students had chosen to sit. Afterward, upon 
marking "o" or "e" (16 odds, 15 evens) next to each name on my alphabetically 
arranged roster, I was surprised to find that no three consecutive names had had the 
same version of the test. Even more surprising, the same thing happened at the final 
exam: Out of 15 "odds" and 17 "evens," no three alphabetically consecutive names 
had the same version. Question: Did I witness an extremely unlikely pair of occur- 
rences, or was my surprise unwarranted? That is, 

In the cases (m, k, t) = (16, 15,3) and (15, 17,3), what is the probability 
that, in a random string of in "odd" and k "even" objects, no t (2) 
consecutive objects have the same parity? 

Clearly, (1) and (2) are different cases of the same problem. What follows is a 
discussion of some elementary ways to solve it. In particular, we exhibit two (equiv- 
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alent) recurrences for the probabilities, both of which can be proved by straightfor- 
ward counting arguments. I found one of these recurrences purely by trial and error 
(how I did so is described in ?3). Subsequently, David M. Jackson of the University of 
Waterloo showed me a simpler one, which we exhibit (with proof) in ?5. In ?2, a 
non-recurrence method is discussed briefly. 

2. A false start, and an answer to question (1) What is the probability of a 
t-clump (some t or more consecutive cards of the same color) in the shuffled deck? 
When first trying to answer this question, I had a silly mental lapse. I reasoned as if 
the colors of successive cards were independent (as of course they are not!); i.e., as if 
the problem were to find the probability Pt(n) that in n consecutive coin-tosses some 
t-clump occurs. The latter problem is easier than (1). Indeed, there are just two 
mutually exclusive ways that a t-clump can appear among n tosses: Either (i) a 
t-clump occurs among the first n - 1 tosses, or (ii) the last t tosses form a clump, its 
type (heads or tails) is opposite to that of the (n - t)-th toss (unless n - t = 0), and no 
t-clump occurs among the first n - t tosses. Thus, 

Pt(n) = Pt(n - 1) + 2-t(1 - Pt(n- t)) 

when n > t (and we have Pt(n) = 0 when n < t, P,(t) = 2 * 2-t). This recurrence for 
Pt(n) was easily incorporated into a computer program and produced the value 
P6(52)=.5595..., which certainly would call into question Gardner's "...almost 
always...." So I told Eric, back then in 1985. Three or four years later, I realized that 
I'd solved the wrong problem! 

(Before addressing the right problem, note the intuitive likelihood that the correct 
probability of a 6-clump in the shuffled deck is even smaller than the value of P6(52) 
obtained above. If the first coin-toss is heads, the second has a 50% chance of being 
heads also; but if the first card is red, the probability that the next card is also red is 
only 25/51.) 

OK, what next? It occurred to me to try the well-known principle of inclusion- 
exclusion, which states that if A1,., A,, are events and P denotes probability, then 

P(Ai u A2U ..u AJ? = B - B2+ B3- " +(-l)' lB, (3) 
where 

B=> P( Ai); B P(A nA.); B3= E P(AfnAJ(Ak); etc. 
i i<; s<y<k~~~i 

If G is the probability that a 6-clump occurs in a randomly shuffled 52-card deck, 
then G will equal the quantity (3) if we let n be a sufficiently large integer and then 
define Ai to be the event that some 6-clump begins with the i-th card in the deck; 
i.e., that cards i, i + 1, . . ., i + 5 have the same color and this color is opposite to that 
of card i-1 if i > 1. Thus, e.g., P(Ai) = O if i > 47, P(Ar n A) = 0 if i <j <i + 6, 
etc.; and Bk + 0 only for 1 < k < 8. I won't make you wade through the calculations. 
Suffice it to say that two days' work with a hand calculator (a computer wasn't 
needed!) produced the bounds 

.4640 < G < .4644, (4) 

indicating that a 6-clump won't even appear in the shuffled deck half the timne-a 
result wholly incompatible with statement (0). Not sure that I myself hadn't erred, I 
tried a "random" simulation by computer. Among 2000 simulated "shuffled decks," 
only about 45% had 6-clumps, a figure roughly 1.3 standard deviations from the value 
(4) (but in the same ballpark). [1] was wrong, after all. 
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3. A better method The foregoing method, though viable for the particular 
parameters (in, k, t) = (26,26,6) (using the notation of (1)), is far too cumbersome for 
the general case, which calls for a general recurrence. Yet I had already tried, and 
failed, to find such a recurrence, using a table obtained by brute-force enumeration 
for t = 3, the smallest nontrivial value of the clump-length t. To fix notation, let 
Ct(m,k) denote the number of strings of in indistinguishable objects of Type A and k 
indistinguishable objects of Type B (say l's and O's) in which no t-clump (run of 
length t) occurs. The following table (5) gives values of C3(m, k) for small m, k. 

VALUES OF C3(n, k) 

in\k 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 1 1 1 0 0 0 0 0 0 0 0 0 0 
1 1 2 3 2 1 0 0 0 0 0 0 0 0 
2 1 3 6 7 6 3 1 0 0 0 0 0 0 
3 0 2 7 14 18 16 10 4 1 0 0 0 0 
4 0 1 6 18 34 45 43 30 15 5 1 0 0 (5) 
5 0 0 3 16 45 84 113 114 87 50 21 6 1 
6 0 0 1 10 43 113 208 285 300 246 157 77 
7 0 0 0 4 30 114 285 518 720 786 683 
8 0 0 0 1 15 87 300 720 
9 0 0 0 0 5 50 246 786 

10 0 0 0 0 1 21 157 683 

Because the roles of Type A and Type B are interchangeable, the matrix (5) is 
symmetric. Challenge: Can you find a recurrence that generates it? (If you'd like, stop 
and do some trial-and-error before reading further. It may take a while.) My own 
attempt had left me stumped. 

But the events of December 1992 (my "odd" and "even" tests) brought the 
problem back to my attention, and I took another look at Table (5). Let's now examine 
it together. The rows for m = 0, 1, 2 are familiar: They are the sequences of coeffi- 
cients in the expansion of (1 + x + x2)n (the trinomial coefficients) for n = 1, 2, 3. In 
particular, each entry in rows m = 1 and m = 2 of Table (5) (say in column k) is the 
sum of the three entries from the preceding row in columns k, k - 1, k - 2. However, 
for m ? 3 this pattern fails; in fact, the rows no longer have left-right symmetry. So 
let's ask: By how much does the pattern fail? Let D3(in, k) be the answer to that 
question; that is, 

2 
D3(in, k) = E C3(m - 1, k -j) - C3(m, k). (6) 

j=o 

Let's tabulate D3: 

VALUES OF D3(m, k) 

in \k 0 1 2 3 4 5 6 7 8 9 10 

0 -1 -1 -1 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 0 
3 1 2 3 2 1 0 0 0 0 0 0 
4 0 1 3 5 5 3 1 0 0 0 0 
5 0 1 4 9 13 13 9 4 1 0 0 
6 0 0 2 9 21 32 34 26 14 5 1 
7 0 0 1 7 24 52 79 88 73 45 20 
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This time, the rows have left-right symmetry all the way through m = 5, with 
nonsymmetry beginning at m = 6, whereas in (5) the nonsymmetry began at m = 3. 
This suggests comparing row 6 of the D3 matrix with row 3 of the C3 matrix: 

k O 1 2 3 4 5 6 7 8 9 10 

C3(3, k) 0 2 7 14 18 16 10 4 1 0 0 
D3(6, k) 0 0 2 9 21 32 34 26 14 5 1 

Aha! Do you see the pattern? If not, let's make it easier by shifting the D3 row 2 
spaces to the left: 

(C3 row) 0 2 7 14 18 16 10 4 1 0 
(D3row) 2 921 32 34 26 145 1 

and now the scheme is as evident as in Pascal's triangle: D3(6, k) = C3(3, k - 1) + 
C3(3, k - 2). A check of other such pairs of rows (row m of D3 versus row m - 3 of 
C) reveals a similar pattern: 

D3(m,k) =C3(m-3,k- 1) +C3(m-3,k-2) (7) 

with two exceptions: when 0 < k < 2 and m = 0 or 3, the left side of (7) minus the 
right side equals - 1 or + 1, respectively. Thus, the correct recurrence for C3 (in view 
of (6)) appears to be 

2 2 

C3(m,k) = E C3(m- 1,k-i) - E C3(nn-3,k-i) +e(m,k) 
i=O i=1 { 1, ifrn=Oand0<k<2 (8) 

e(rn,k) = -1, if m=3andO<k <2 
0, in all other cases 

Generalizing (8) to arbitrary values of t in place of t = 3, a natural guess was that, for 
all positive integers t and all integers m, k, 

t-l t-l 

Ct(m,k) = E Ct(m- 1,k-i) - E Ct(m-t,k-i) +et(rn,k) 
i=O i=l ( 1, if in=Oand0<k<tt (9) 

et(m,k) = -1, ifm=tandO<k<t 
0, in all other cases 

and numerical data (brute-force enumeration again) seemed to confirm it. At this 
point, I found proof easier than discovery and soon had an elementary combinatorial 
proof of (9). The proof is available to the reader on request, but will not be given 
here; instead, we shall exhibit in ?5 a simpler such proof of the equivalent Jackson 
recurrence. At any rate, next on my agenda was to use (9) to obtain numerical results, 
including answers to the specific questions (1) and (2) posed in ?1. 

4. Numerical results For a random sequence of in objects of one type and k of 
another, the probability that a t-clump occurs is clearly 
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Using (9), a program to compute C,(rn, k), and hence P,(m, k), was written, tested, 
and run for various values of the parameters. One result was 

P6(26,26) = .46424..., 

agreeing with (4) (at which the programmer felt great relief). Two other results were 

P5(26,26) = .77307 ...; P4(26,26) = .97396 ..., 

so that the phrase "almost always" in assertion (0) still seems exaggerated even with 
t = 5 in place of Gardner's t = 6. (For t = 4, the phrase seems more appropriate.) 

As for my "odd" and "even" tests in December '92: The probability of no 3-clump 
on the class test was 

C3(16,15)j( )= .0042342..., (10) 

and the probability of no 3-clump at the final exam was 

C3(15,17) (3) = .0028779... (11) 

If the two distributions were independent,* we would conclude that the probability of 
a 3-clump occurring on neither exam was the product of the numbers (10) and (11), 
namely 

.00001218..., 

less than 1 out of 82,000. (And yet it happened. A nonmathematical friend to whom I 
reported the event-and the odds against its occurrence-reacted thus: "So I could 
win the lottery!") 

Postscript. It is easy to find the expected number E = E(m, k, t) of noncontiguous 
t-clumps in a sequence of m l's and k 0's. Indeed, the probability that the i-th term 
of the sequence begins such a run is ([m]t + [k]t)/[m + k]t if i = 1 and is (k[n], + 
m[k]t)/[m + k]t(n + k - t) if 1 < i - 1 < in + k - t, where [x L denotes the product 
x(x - 1) ... (x - (n - 1)). (Compare with the discussion following display (3).) Sum- 
ming over all i, since expectation is additive, we get 

E(m, k, t) = ((k + 1)[in]t + (m + 1)[k]t}/[m + k]t (1 < t < ni + k). 

In particular, E(26,26,6) = .610... . Since this number clearly must exceed the 
probability of at least one 6-clump in the shuffled deck, we don't even need the actual 
probability to see that statement (0) is much too strong. Similarly, with respect to our 
question (2), E(16,15,3) + E(15,17,3) = 7.55..., so that the extraordinariness of "no 
clumps" seems evident even before we have found the recurrence (8) or (9). 

For n (fair) coin tosses, the formula for the expected number of t-clumps (obtained 
similarly) is even simpler: 

E(n,t)=(n+2-t)/2t. (12) 

Approximate independence, at least, seems likely to me; I had instructed "fiiends" to sit apart, and the 
two exams were held in different rooms with different seat layouts. 
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It has been shown (e.g., in [4]) that if L,, is the length of the longest run in a 
sequence of n tosses, then E(L,,) log2 n as n --> oo. (12) makes the latter intuitively 
plausible. For example, if n 21000 (log2 n = 1000), then E(n, 997) is extremely close 
to 8 and E(n, 1003) is extremely close to 1/8, making it seem very likely that 
997 < Ln < 1002. Viewed in this light, it is not surprising that the variance of Ln is 
nearly constant when n is large, a fact that Schilling's award-winning article [7] calls 
"remarkable" (as indeed it seems when first encountered). [7] and [4] give more 
precise expressions for E(Ln) and Var(Ln). 

5. A more efficient recurrence The number of terms on the right side of (9) 
increases with t. In [6], Jackson gave a partial proof, using the theory of combinatorial 
generating functions (as developed, e.g., in [5]) of the following alternate recurrence 
for Ct(m, k), in which the right side has only six terms no matter how large t is: 

Ct(m, k) =c(m -C k) C(m, k -1) -Ct(Im -t, k - Ct(m -1, k -t) 

f 1, if(m,k) =(0,0) or(t,\t) (13) 
e*(m,k) = - 1, if(m,k) = (O,t) or(t,0) . 

0, otherwisej 

A referee of this article has pointed out that (13) can in fact be derived without 
generating functions, as follows: 

For fixed t, we call a sequence of l's and O's good if it contains no t-clump. A good 
sequence of m ones and k zeros will be denoted by S(m, k); an S(m, k) beginning 
with the digit i (= 0 or 1) will be denoted by Si(m, k); and x(t) (where x = 0 or 1) 
will denote the sequence (x, x,. .., x) (t terms). Also, let [A, B] denote the sequence 
consisting of the sequence A followed by the sequence B. 

By inspection, (13) holds if (m, k) = (0, 0) or (0, t) or (t, 0), so we assume (m, k) is 
not one of those three pairs. Since (m, k) 0 (0, 0), every S(m, k) has the form 

[1, S(m - 1, k)] or [0, S(m, k - 1)] . (14) 

Conversely, since (m, k) 0 (0, t) or (t, 0), a sequence (14) is an S(m, k) if and only if 
it is not of the form 

[1(t)0,osGm-t,k- 1)] or [o(t',1,S(1m- 1,k-t)]. (15) 

Next, if (im, k) o (t, t) then a sequence (15) also has the form (14) if and only if it is 
not of the form 

[P(),O(t), Sj(1m-t, k -t)] or [oft),1l(t), S0(1m-t, k -t)]; (16) 

the excluded sequences (16) all have the form (15); and their number is Ct(m - t, k 
- t). If instead (in, k) = (t, t), there are exactly two excluded sequences, namely 
[(t), 0(t)] and [o(t), (t)], and 2 = Ct(0, 0) + 1. In either case, the number of sequences 
(15) not of the form (14) is Ct(m - t, k - t) + et*(m, k), so that 

no. of S(im, k)'s = (no. of sequences (14)) - (no. of sequences (15)) 

Ct(mc-ht,k-t) +e*(m,(k), 

which is precisely (13). 
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6. Some exercises We asserted (?1) that the recurrences (9) and (13) are equiva- 
lent; a nice exercise for the student is to prove this assertion algebraically, without 
reference to combinatorics. Here are two more such exercises: 

I. For fixed t, if dn = EkkCt(n - k, k) (the n-th northeast-to-southwest diagonal 
sum in the matrix C), then 

t-l 

dn = 2n (O < n < t); dn = 5 d,1_j (n 2 t). (17) 
j=1 

For example, when t = 3 then d,, = dn-I + d, 2 (n 2 3), and in fact the d's are twice 
the Fibonacci numbers: dn = 2 F,+I when n > 1 (see table (5)). (17) can be proved 
either combinatorially or by induction. 

II. For fixed t, if r,i = EkCt(m, k) (the m-th row sum in Ct), then 
t-l 

r llt'111+1 (O <m <t); r,, = (t -1) >rl_ (m t). (18) 
j=1 

This can be proved by induction using (9); I haven't found a combinatorial argument. 
Either (17) or (18) can be used to check the matrix Ct, after constructing Ct from 

(9) or (13). 

7. Related problems Space does not permit a comprehensive listing here of the 
literature on clump-related problems, but a few quite recent references (called to my 
attention by a knowledgeable referee) deserve brief mention. Godbole [2] obtains an 
explicit formula (as a sum) for the probability that, in the first n terms of a sequence 
of m l's and k O's, no run of t consecutive l's occurs. (I know of no such explicit 
formula for "consecutive l's or consecutive O's," which was the problem addressed 
herein.) Sequences whose successive terms are independent (i.e., no parameters m, k) 
are easier to deal with, and several articles have done so in considerable generality. In 
particular, two papers in [3] treat "random n-letter words formed from an r-letter 
alphabet" (r ? 2): Suman [3, 119-130] obtains three formulas (involving sums) for the 
probability that no t-clump occurs in such a "word", and Chryssaphinou, et al. [3, 
231-241] study the waiting time until at least one of a given set of patterns occurs ("at 
least one t-clump" would be a special case). For readers wishing to pursue such 
matters further, the aforementioned articles also contain useful bibliographies; in 
addition, [3] contains recent articles on other clump-related topics. 

Editor's Note. After this paper was accepted, it was pointed out that a recursion for the probability of 
clumps has been obtained by E. F. Schuster in [3], pp. 91-111. His recurrence is more complicated in that 
the terms of his recurrence must themselves be obtained from a different recurrence. Schuster presents a 
table of the probabilities that no t-clump occurs in a sequence of m I's and n O's, up to in + n = 50. Just 
short of what's needed for a deck of cards! 
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A Symmetry Criterion for Con jugacy in Finite Groups 

SOLOMON W. GOLOMB 
University of Southern California 

Los Angeles, CA 90089-2565 

A standard technique in finite group theory is to partition the elements in some 
natural way. The two most fruitful partitions of a group are into cosets and into 
conjugacy classes. Lagrange's theorem and factor groups are two consequences of 
partitioning a group into cosets. The class equation and the Sylow theorems are two 
consequences of partitioning a group into conjugacy classes (for more details, see, e.g., 
[1].) In this note we give a simple criterion for conjugacy. 

DEFINITION. Two elements a and b in a group G are said to be conjugate if for 
somne element g in G, b = g -'ag. 

The definition has several simple consequences. 

1. Conjugacy is an equivalence relation on G, with respect to which the elements of 
G are partitioned into conjugacy classes. 

2. In a commutative group, each element is in a conjugacy class by itself. 
3. In a non-commutative group, the identity element is in a conjugacy class by itself 

(since g - leg = e for all g), and, more generally, a group element c is in a 
conjugacy class by itself if and only if c commutes with every element of the group. 

4. If G is finite, the size of every conjugacy class in G divides the order of G (the 
number of elements in G). 

To determine whether given elements a and b in G are conjugate, it is certainly 
sufficient to calculate g- 'ag for all g in G, and see whether any of these equals b. To 
determine the conjugacy classes in G, it is sufficient to calculate g-'ag for all g and 
a in G. The purpose of this note is to show that these calculations are unnecessary if 
the group table (or mnultiplication table) of G is already available. Although this 
criterion for conjugacy is extremely simple to state and to prove, it seems to have 
eluded generations of writers of textbooks on modern algebra in general and group 
theory in particular. 

CRITERION. Two elements a and b of a finite group G are conjugate if and only if 
they can be found symmetrically situated relative to the main diagonal of the group 
table. 

We restate this criterion as follows: 

THEOREM 1. Distinct elements a and b in G are conjugate if and only if there are 
elements u and v in G such that a = uv and b = vu. (Thus, a is in row u and column v, 
while b is in row v and column u of the group table, for some elements u and v in G.) 

Proof. The products uv and uu are always conjugate elements in G, because 
u- (u)u = (u - u)(uu) = vu. 

Conversely, given conjugate elements a and b in G, there is an element g in G 
with b = g-'ag. Let u = g and v = g-1a. Then uv = g(g-'a) = a, while Vu= 
(g - 'a) g = b. This completes the proof. 
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It is useful to observe that the element a of the group G occurs in every row g in 
column g -la, in the group table of G. 

FIGURE 1 shows the multiplication table of D3, the dihedral group of the equilateral 
triangle, which is isomorphic to S3, the group of all permutations on three symbols. 
(The three vertices of the equilateral triangle are permuted in all possible ways by the 
elements of D3; hence the isomorphism with S3.) This is the smallest noncommuta- 
tive group. 

D3 I R1 R2 A B C 

I I R1 R2 A B C 

R1 R1 R2 I ? A L A 

R2 2 2 I < > 

A A ? > I R2 R1 

B B A R R I R 

C C Ej1 G) R2 R1 I 

FIGURE 1 
The group table for D3, with the symmetiically situated pairs (B, C), (A, B), and (A, C) 
highlighted. By Theorem 1, the conjugate classes in D3 are easily seen to be {I}, {R1, R2}, and 
{A, B,C}. 

In FIGURE 1, I is the identity element; R1 and R2 are rotations by 120? and 240?, 
respectively; and A, B, and C are 180? reflections in each of the three axes of the 
triangle. We note that R1 and R2 are symmetrically situated three times in the table; 
that each of the pairs (A, B), (A, C), and (B, C) are found twice in symmetric 
locations in the table; and that I is symmetric only to itself. Thus, the conjugacy classes 
in D3 are {I}, {R1, R2}, and {A, B, C}. 

Each pair of conjugate elements a, b, with a = b, appears at least twice in 
symmetric positions in the multiplication table for G. The precise multiplicity of 
occurrence of pairs a and b of conjugate elements in symmetric positions in the 
multiplication table of G is given in the following theorem. 

THEOREM 2. If a and b are conjugate elements of the finite group G, with a = b, 
then there are n/k = r pairs of elements {ui, vi} in G x G such that u,vu = a and 
viui = b, where n is the order of G, and k is the size of the conjugacy class in G to 
which a and b belong. 

Proof Let a and b belong to a k-element conjugacy class K of the n-element 
group G, and let C(a) be the subset of elements of G such that h-'ah = a for h in 
C(a). It is immediate that C(a) is a subgroup of G. Let g1 be any element of G such 
that g-'ag, = b. Then every element gi of the right coset C(a)g1 of C(a) also gives 
gT-lagi = b, and the right cosets of C(a) are in one-to-one correspondence with the 
elements of K. Thus, the order r of C(a) is n/k. Let the elements of C(a) be 
{h1, h2 ... . hr}. Then the elements of the right coset C(a)g1 are {g,, g2 ..gr} with 
gi = hgi g1 fori = 1, 2, ..., r. Note that 

g7lagi = (higl) 'a(higl) = g1 '(h-'ahi)g, = g-'ag, = b 
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for each gi, i=1,2,...,r. Let u,=g and vi = gi-a. Then uvi= a and vui =b for 
each i, where ui = gi runs through the r distinct elements of C(a)g1. Conversely, 
suppose there are any two elements u and v in g with uv = a and vu = b. Then 
v =u-Ia, and vu =u-Iau = b; so u is an element g in the coset C(a)g1. 

Note. In FIGURE 1, we observed that each of the pairs (A, B), (A, C), (B, C) occurs 
twice in symmetric positions relative to the main diagonal, while the pair (R1, R2) 
occurs three times. In view of Theorem 2, this corresponds to the fact that { A, B, C) is 
a conjugacy class with 3 elements, and 6/3 = 2; while {1R, R2} is a conjugacy class of 
2 elements, and 6/2 = 3. 
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1. Jacobson, N., Basic Algebra I, W. H. Freeman, San Francisco, CA, 1974. 

More on the Converse of Lagrange's Theorem 

GUY T. HOGAN 
Norfolk State University 

Norfolk, VA 23504 

It is certainly true, and clear, beyond peradventure, that the Theorem of Lagrange, 
which says that the order of a subgroup of a finite group divides the order of the 
group, is one of the most basic results in the theory of finite groups. See Herstein 
[4, p. 66], or Birkhoff and MacLane [1, p. 111]. Indeed, it may be claimed that this 
was the result that started the "arithmetization" of the theory. 

Recently there appeared in this MAGAZINE [2, p. 23] and later in [3, p. 139] a simple 
argument, based on the properties of cosets, showing that A4 (the alternating group 
on four symbols) has no subgroup of order 6. This, of course, means that the natural 
converse of Lagrange's Theorem is false, a fact known for almost 200 years [2,3]. 
What we offer here is another simple proof of the same result, using nothing more 
sophisticated than element orders, and Lagrange's Theorem itself. 

Using the same notation as in [2], we write A4 as 

A4 = {(1),(12)(34),(13)(24),(14)(23),(123),(132), 

(124), (142), (134), (143), (234), (243)}. 

Note that the first four elements listed form a subgroup, V, the Klein four-group, in 
which the product of any two of the three involutions (elements of order 2) is the 
third one. It is also worth pointing out that the next eight elements are all of order 3. 
Suppose there exists a subgroup H of A4, IHI = 6. Since 6 is even, there exists an 
element, b, of order 2 in H. And since there are eight elements of order 3 in A4, at 
least two of them must belong to H. Let t be one of them. Now tbt-' belongs to H 
and has order 2. If tbt-' = b, then t and b commute, and tb would have order 6. But 
there are no elements of order 6 in A4. Hence, tbt-' = c is a second element of 
order 2 in H, so that bc belongs to H as well. Finally, since all three involutions 
belong to H, it follows that V is a subgroup of H, contradicting Lagrange's Theorem. 
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for each gi, i=1,2,...,r. Let u,=g and vi = gi-a. Then uvi= a and vui =b for 
each i, where ui = gi runs through the r distinct elements of C(a)g1. Conversely, 
suppose there are any two elements u and v in g with uv = a and vu = b. Then 
v =u-Ia, and vu =u-Iau = b; so u is an element g in the coset C(a)g1. 

Note. In FIGURE 1, we observed that each of the pairs (A, B), (A, C), (B, C) occurs 
twice in symmetric positions relative to the main diagonal, while the pair (R1, R2) 
occurs three times. In view of Theorem 2, this corresponds to the fact that { A, B, C) is 
a conjugacy class with 3 elements, and 6/3 = 2; while {1R, R2} is a conjugacy class of 
2 elements, and 6/2 = 3. 
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It is certainly true, and clear, beyond peradventure, that the Theorem of Lagrange, 
which says that the order of a subgroup of a finite group divides the order of the 
group, is one of the most basic results in the theory of finite groups. See Herstein 
[4, p. 66], or Birkhoff and MacLane [1, p. 111]. Indeed, it may be claimed that this 
was the result that started the "arithmetization" of the theory. 

Recently there appeared in this MAGAZINE [2, p. 23] and later in [3, p. 139] a simple 
argument, based on the properties of cosets, showing that A4 (the alternating group 
on four symbols) has no subgroup of order 6. This, of course, means that the natural 
converse of Lagrange's Theorem is false, a fact known for almost 200 years [2,3]. 
What we offer here is another simple proof of the same result, using nothing more 
sophisticated than element orders, and Lagrange's Theorem itself. 

Using the same notation as in [2], we write A4 as 

A4 = {(1),(12)(34),(13)(24),(14)(23),(123),(132), 

(124), (142), (134), (143), (234), (243)}. 

Note that the first four elements listed form a subgroup, V, the Klein four-group, in 
which the product of any two of the three involutions (elements of order 2) is the 
third one. It is also worth pointing out that the next eight elements are all of order 3. 
Suppose there exists a subgroup H of A4, IHI = 6. Since 6 is even, there exists an 
element, b, of order 2 in H. And since there are eight elements of order 3 in A4, at 
least two of them must belong to H. Let t be one of them. Now tbt-' belongs to H 
and has order 2. If tbt-' = b, then t and b commute, and tb would have order 6. But 
there are no elements of order 6 in A4. Hence, tbt-' = c is a second element of 
order 2 in H, so that bc belongs to H as well. Finally, since all three involutions 
belong to H, it follows that V is a subgroup of H, contradicting Lagrange's Theorem. 
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A Persian Folk Method of Figuring Interest 

PEYMAN MILANFAR 
SRI International 

333 Ravenswood Ave. 
Menlo Park, CA 94025 

I recently learned a very quick and effective way of estimating monthly payments on a 
loan. My father showed me the method, having learned it himself from my grandfa- 
ther, who was a merchant in nineteenth century Iran. While its origins remain a 
mystery, the method is still in use among merchants all around Iran, and perhaps 
elsewhere. 

My father used the formula: 

Monthly payment = Number of months (Principal + Interest); 

he calculated the interest as 

Interest = + Principal X Number of years X Annual interest rate. 
The exact formula, assuming interest accrued monthly, can be found in any basic 

finance textbook: 

c r(1+ r )Np 
(I +r)N_ (1) 

where C is the (exact) monthly payment, r is the monthly interest rate (1/12 the 
annual interest rate), N is the total number of months, and P is the principal. With 
this notation, the folk formula becomes 

Cj=I(P+ jPNr). (2) 

In many cases, Cf is a surprisingly good approximation to C. As an example, for a 
4-year auto loan of $10,000 at an annual rate of 7% compounded monthly, the exact 
formula gives monthly payments of $239.46 while the folk estimate gives $237.50. 

To see why the approximation works, we regard C as a function of r, with all other 
quantities held fixed. (The singularity in (1) at r = 0 can be cancelled out.) A 
straightforward calculation shows that the first order Maclaurin polynomial for C(r) 
has the form 

C(r)~ NP+ 
I 
P(N+ I)r) (3) 

which closely resembles the definition of Cf. For a fixed P, when r is sufficiently 
small and N sufficiently large, the difference between (2) and (3) is small. 

This content downloaded from 141.233.160.21 on Sat, 28 Nov 2015 02:53:51 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


This content downloaded from 139.184.14.159 on Mon, 30 Nov 2015 04:30:37 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


VOL. 69, NO. 5, DECEMBER 1996 377 

Identities on Point-Line Figures 
in the Euclidean Plane 

GUIDO M. PINKERNELL 
University of Wales, College of Cardiff 

Cardiff CF2 4YH Wales, UK 

Introduction In [3] Larry Hoehn gave a proof of a theorem that is known as the 
Theorem of Pratt-Kasapi [1]. This note collects some ideas on how to generalize the 
theorem so that it holds not only for the pentagram but also for many other figures of 
the Euclidean plane and their duals. 

THEOREM 1. In a pentagrarn A1 A2 A3 A4 A5 with B1, B2, B3, B4, B5 as the points of 
intersection of its sides (FIGURE 1), the Pratt identity holds: 

AIB1 A2B2 A3B3 A4B4 A5B5s 
B1A9 B A3 B3A4 B4A5 B5A 

Proof. In any triangle ABC the sine rule 

sin a a 
sin 8 = b(') 

holds. Apply this to the five "tips" of the star-shaped pentagram, then multiply and 
simplify the five equations while observing that two adjacent triangles or "star-tips" 
have equal angles at their common vertex. 

Al 

A, B B5 A5 

B. G B4 

A,3 // ; \A4 

FIGURE I 
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From the idea of the proof one can easily derive a more general, quite 
straightforward method to prove similar theorems on a pentagram and other figures. 
Corresponding to the five "tips" A ? 1 ?I 1 Bi, (i = 1, . . ., 5) of the pentagram where it 
is understood here and elsewhere that A5+? = A,, one has to find a closed chain of 
triangles where two adjacent triangles have two common lines as sides. Then the point 
of intersection of the sides is a common vertex and the angles of each triangle at this 
point are either vertically opposite, adjacent, or the same angle counted twice. In all 
cases the sines of the angles are equal, and by multiplying and simplifying the 
equations (1) for all triangles of the chain we obtain an identity again. Any identity 
obtained this way by a tliangle chain we will call a Pratt identity. 

It is easy to formulate the identity straightaway once a triangle chain is found: For 
each triangle, (1) selects two sides, now considered as segments. All these segments 
form a closed polygon that exactly follows the ratios of the resulting Pratt identity. 
FIGURE 2 demonstrates the use of a triangle chain for proving Theorem 1; FIGURE 3 
shows the result of a different chain in a pentagram. 

A, B, B1 A s B7 B5 

B9 B4 B?B4 

A3 A4 A3 A4 

AIB1 A,B2 A3B. 
AB4 A5BB A1B1 A,A3 B9B3 B4A A9B5 

BIA.? B2A3 B3A4 B4A5 B5A - B1A5 A3B2 B3B4 A4A2 B5A, 

FIGURE 2 FIGURE 3 

Pratt identities on point-line figures The definition of a triangle chain does not 
depend on the specific order of the points on the lines. From FIGURE 4 it becomes 
apparent that, when changing the order-here lines AC and DE meeting in 
B-sin a still equals sin /8 while the triangles ABD and CBE in each case have two 
common lines as sides, as required in the definition. Hence the corresponding Pratt 
identity remains invariant. For the point-line structure of a pentagram A1 A2 A3 A4 A5, 
which is given by 

ten points Ai, Bi i=1.5 

andfivelines ai=AiA9 i=1A.i5 (2) 

suchthat Biain i=1a...,5, 

this argument allows us to state the following generalization of Theorem 1. A 
point-line figure is said to be isomorphic to that of a pentagram if it meets the 
conditions (2). 
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E E 

D DD 

<~~~ C L af3a= 
A B f3 A B C A C B 

E 
FIGURE 4 

THEOREM 2. The Pratt identity of Theorem 1 holds on any point-line figure 
isomorphic to that of a pentagram. 

Some examples are given in FIGURE 5(a) and FIGURE 5(b). 

B4 

B9, 

B4 
A1 

B1 

A, A,5A 

B3 A3 
(a) (b) 

A13 B A9B9 A3B3 A43B A5B5 
B1A2 B,A3 B3A4 B4A5 B5A1 

FIGURE 5 

Triangle chains in other figures It is obvious that triangle chains can be found in 
any star-shaped n-gon, like a pentagram, heptagram, etc. One has only to take the 
"tips" of the figure as the triangles. But on the other hand, constructing a simple 
closed triangle chain without having defined a point-line structure beforehand can 
lead to Pratt identities on many other figures, some of which might be unfamiliar. 
FIGURE 6(a) and FIGURE 6(b) show the well-known theorems of Menelaus and Ceva, 
FIGURE 6(c) could be described as Ceva without concurrent transversals, and FIGURE 7 
is a solution of a problem by H. Giulicher [2]. 
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C 

D A B A D B A D B 
AD BE CF AD BE CF AD BH CF AG BE CJ 
DB EC FA TDB ECFA 1 DB HC FA GB EC JA 

(a) (b) (c) 

FIGURE 6 

s.3 

'sA13 

P2 3S Poo 302 M 12 

P1531 S:33M S11S13 PAD2 S99M S33S32 P9S12 S11M SIIM S92S21=1 
S31 S33 MSJJ S13 P3 S23S22 AIS33 S32 P29 S12Sl MSII MS22 S2 1P, 

FIGURE 7 

One usually decides whether such an identity equals 1 or -1 by observing whether 
it contains ordered segments in opposite directions on the various lines. Thus we are 
led to the concept of an ordered point-line figure. We deliberately ignored this 
concept at the beginning, when we used the sine rule, which does not take account of 
signs. 

Identities on dual fiegures The symmetry of the sine rule (1) leads to a second 
group of identities, which holds on the dual of a given figure. When converting every 
point P into a line p and vice versa without changing the incidences, a triangle ABC 
of a triangle chain becomes a triangle formed by the three lines a, b, c. And instead of 
two common sides, two adjacent triangles now have two common points, i.e., a 
common side considered as segment. (See FIGURE 8.) Hence after multiplying and 
simplifying the equations (1) of the triangle chain, the right-hand side of each (1) will 
have vanished and an identity is left consisting only of sines. Interestingly enough, the 
actual formulation of this new Pratt identity is similar to the original: One simply has 
to replace "A Bj" by "sin X a7b ," i.e., the sine of the angles in which the lines aA, bj 
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A1 

b2 

A f \5 a.,h 

A2I a4 A5 dua A2 a3 a.-, AI (14 V Z ~~~~~~~~'iues 
B.-, (1~~~~~~~~~~~~4 (15b 

a B3 4 

A3 V N~~A4 A3 b 4 A4 

A B1 = leingth of segimeint Al Bj aib~ siine of aiigle at a in b 

A1B1 A.,B, A3B3 A4B4 A5B5 alb, a2b2 a3b3 a4b4 a5b5 
B1A2 B2A3 B3A4 B4A B5 1 b1a2 b2a3 b3a4 b4a b5a = 

FIGURE 8 

intersect. What we have exercised on the pentagram can obviously be generalized to 
any figure where there exists a Pratt identity. Hence 

THEOREM 3. Given any Pratt identity on a point-line figure of the Euclidean plane, 
involving lengths of segments Ai B1, there exists a corresponding identity on the dual 
structure involving sines of angles ? ai b. 

Appendix 

To prove Pratt-Kasapi I was originally looking for a different proof via Ceva's 
theorem. I came across something else that is quite nice and should be mentioned 
here: 

THEOREM 4. Let M be any point inside the inner pentagon B B2 B3 B4 B of a 
convex pentagram with the notation of Theorem 1, and let Ci be the point of 
intersection of the ray MBi and the side A A + 1 (i =1, . . ., 5) (FIGURE 9). Then 

C,~~~~~~~C 

A,~~A 

B., 
C2 3c 

A4 
A3 C3 

FIGURE 9 
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AIC, A2C2 A3C3 A4C4 A5C5 3 
C1 A2 C2 A3 C3 A4 C4 A5 CA1 ( 

This is a corollary of the following theorem (which is more an instruction to 
construct a point from given points): 

THEOREM 5. Let C1, C2, C3, C4 be points on the sides of a convex pentagon 
A1 A2 A3 A4 A5. If C5 is constructed as described below, then the equation (3) holds. 

Construction of C5. Let M be any point inside A1 A2 A3 A4 A5. For each of the five 
triangles AiAi+1M we will construct-one after another-the situation of Ceva's 
theorem: 

In triangle A1A2M let D1 be a point on the side A2M. Then define B1= 
A1 D1 n MC1, D5 = A2 B1 n MA1. 

In triangle A2 A3M define B2 = A3D1 n MC2, D2 = A2 B2 n MA3 (FIGURE 10). 
Similarly construct D3, D4 in the triangles A3 A4 M, A4 A5M. 
In triangle A5 A1 M define B5 = A1 D4 n A5 D5. Then C5 AA5A1 n MB5 is the 

2 ~~~C4 

A3 

FIGURE 10 

point we were looking for. 
For a proof apply Ceva's theorem on each of the triangles Ai Ai+ IM and multiply 

and simplify the corresponding equations. 
Theorem 4 then follows when Ai, Ai+2, Di are collinear. 

The author is grateful to the referees and to Dr. J. F. Rigby of the University of Wales College of Cardiff 
for their various helpful comments. 
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PROBeL EMS 

GEORGE T. GILBERT, Editor 
Texas Christian University 

ZE-LI DOU, KEN RICHARDSON, and SUSAN G. STAPLES, Assistant Editors 
Texas Christian University 

Proposals 
To be considered for publication, solutions 
should be received by May 1, 1997. 

1509. Proposed by David Callan, University of Wisconsin, Madison, Wisconsin. 

Let A be a real n X n matrix satisfying (i) each row sums to 1; (ii) each entry 
immediately above the main diagonal is 1/2; (iii) all other entries above the main 
diagonal are 0. Prove that the permanent of A is 1/22 -1. 

(The permanent of a matrix is E EH sI= 1 a,, ((i). Thus, it is similar in form to the 
deteri-inant: E - 1)sgi(f .. i a ) 

1510. Proposed by Detlef Laugwitz, Technische Hochschule Darrmstadt, Darrnstadt, 
Germany. 

Find the largest positive number c such that for every positive integer n, there is at 
most one perfect square in the set {1 + k2n: 2 < k < cF}. 

1511. Proposed by "Ruby Rose Z"L," Pacific Lutheran University, Tacoma, 
Washington. 

Let P1. P7 be 7 points in the plane. Consider the 35 convex polygons 9 
formed by selecting 4 of the 7 points and taking their convex hull. Prove that: 
(i) Among any 4 of the polygons i one can always find 3 that have a point in 

common. 
(ii) There are 3 points in the plane such that every polygon contains at least one of 
the 3 points. 
(iii) There are configurations of 7 points for which there do not exist 2 points such 
that every polygon contains at least one of the 2 points. 

W1,e invite reaclers to submnit problems believed to be new and appealing to stuldents and teachers of 
advanced undergradutate mathemnatics. Proposals mutst, in general, be accompanied by solutions and by any 
bibliographical infornation that will assist the editors and referees. A problem submitted as a Quickie 
should have an unexpected, succinct solution. 

Solutions should be written in a style appropriate for this MAGAZINE. Each solution should begin on a 
separate sheet containing the solver's namne and fulll address. 

Solutions and new proposals should be mnailed to George T. Gilbert, Problems Editor, Department of 
Mathematics, Box 298900, Texas Christian University, Fort Worth, TX 76129, or mailed electronically 
(ideally as a LATEX file) to g.gilbert@tcu.edu. Readers who use e-mail shouldl also provide an e-mail 
address. 

384 
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1512. Proposed by Arthur L. Holshouser, Charlotte, North Carolina, and Benjamin 
G. Klein, Davidson College, Davidson, North Carolina. 

Let R be a commutative ring such that X3 =X for every x E R. For x, y E R, 
let F(x, y)=xy-x2y-xy2 -x2y2. If F(a,b)=a and F(b,c)=b, prove that 
F(a, c) = a. 

1513. Proposed by Loren C. Larson, St. Olaf College, Northifleld, Minnesota. 

Can every set of 4n points in the plane, no three of wllich are collinear, be evenly 
quartered by two mutually perpendicular lines? 

(The original, continuous version of this question appeared in Hugo Steinhaus' One 
Hundred Problems in Elementariy Mathematics, Dover, 1979, 26.) 

Qu ickies 
Answers to the Quickies are on page 391. 

Q856. Proposed by Jerrold W. Grossman and Stephen Mellendorf, Oakland Univer- 
sity, Rochester, Michigan. 

A football league with 2n teams draws up the first two weeks of its schedule such 
that each team plays one game each week. There is no restriction on two teams 
meeting more than once. Assume that each team in a given game has a fifty percent 
probability of winning and that the results of the games are independent. 
(i) Determine the probability that each team's record is 1-1 at the end of two weeks 
(as a function of the schedule). 
(ii) Assume that each week's schedule is a random matching. Determine the probabil- 
ity that each team's record is 1-1 at the end of two weeks. 

Q857. Proposed by Wu Wei Chao, He Nan Normal University, Xin Xiang City, He 
Nan Province, China. 

Let O<al<a2? <a and O<bl?b2< <b,, 
be given, with E%laia 

Ell In addition, assume there exists k with 1 < k < n so that b. < ai if i < k and 
bi > ai if i > k. Prove that 

a n 

fl a! 2 [l bi. 
i=1 i=1 

Q858. Proposed by Murray S. Klamkin, University of Alberta, Eclmonton, Alberta, 
Canada. 

Show that the Diophantine equation 

x2 +27y2z2(y+z)2 =4(y2 +yz+z2 )3 

has an infinite number of integral solutions (x, y, z) with x, y, and z relatively prime 
and xyz 0 0. 
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Solutions 

An Euler's Phi-Function Congruence December 1995 

1484. Proposed by Lenny Jones, Shippensburg University, Shippensburg, Pennsyl- 
vania. 

Let o-(n) be the sum of the positive divisors of the positive integer n and let 4(n) 
be Euler's totient function. For an arbitrary positive integer k, find all positive 
integers n that satisfy 

nko(n) 2 (mod ?(n)). 

Solution by L. L. Foster, North'ridge, California. 
For a given k > 1, the congruence is satisfied when n = 1, a prime, 4, or 2q, where 

q is any odd prime having the property that (q - 1)/2 divides 3 * 2k - 1. 
The congruence is easily seen to hold for all k when n = 1, any prime, 4, or 6. For 

a given k, suppose that n is another integer such that the congruence holds. Write 
n = Hs= l pfai, where the pi are distinct primes and the ai are positive integers. Then 

s l s\ 

Hl P,k (n) 2 (mod 11 pYi-l( P - 1))( . 
i=l i=l 

If ca > 1, then pf.a-' divides 2, hence pi = 2 and a, = 2. In this case, n = 4m, where 
m is odd. If m > 1, then 4?(n) 0 (mod4) and 4 divides 2, a contradiction. We have 
the same contradiction if we suppose that n has two (distinct) odd prime factors pi 
and p,. For then 4 divides (pi+ )( pj + 1) which divides ov(n), and 4 divides 
(pi - 1)(pj - 1) which divides ?/(n). Hence we need only consider n = 2q, where 
q > 3 is an odd prime. It follows that 4(n) = q - 1 and 

nou(n) = 3 . 2kqk(q + 1) -2 (mod q - 1). 

Equivalently, 3 *2k - 1 0 (mod(q - 1)/2). It is not difficult to prove that such an 
odd prime q must be of the form 12m - 1. The examples q = 71 and q = 83 show 
this is not sufficient. 

Also solved by Robin Chapman (United Kingdom), John Christopher, Con Amnore Problem Group 
(Denmark), D. Kipp Johnson, 0. P. Lossers (The Netherlands), Heinz-jiirgeni Seiffert (Germany), Western 
Maryland College Problems Group, and the proposer. 

Integrality of the Arithmetic-Geometric Mean Ratio December 1995 

1485. Proposed by Yasutoshi Nomura, Hyogo University of Teacher Eclucation, 
Hyogo, Japan. 

Let n > 1 be a natural number and consider the statement Qn: 
There exist positive integers xl, x2, .., for which the arithmetic-geometric 

xil + ... +x11 
mean quotient 1 " is an integer greater than 1. 

nx1 .X n 

(a) Show that Q2 is false. 
(b) Show that Q, is true for even n > 2 or for prime n congruent to 5 modulo 6. 
(c)* Find another n for which Q,, is false or an infinite family for which it is true. 
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Solution by John S. Sumner and Kevin L. Dove, University of Tampa, Tampa, 
Florida. 

(a) Suppose (X2 + X2)/(2 X1X2) = k for some integer k. By factoring and canceling, 
we may assume that x1 and x2 are relatively prime. Then x2 + x2 = 2kx1x2, so that 
xl divides x2 and x2 divides X24. Hence xl = = 1, proving that k = 1. 

(b) If n is even, then (n- I)n' -1 (mod n). For 1i i< n- 1, let xi= 1, and 
let xn = n-1. Then 

X'lt + *n+X x + (n n- ) n 

nx ...Xn n 

is an integer greater than 1, since n > 2. 
Similarly suppose n is a prime congruent to 5 (mod 6). Let x,1 =n - 1, let 

xn = n - 3n + 3, and otherwise let xi =1. Since n23n+3=(n-l)(n-2)+1,it 
follows that n - 1, n, and n2 - 3n + 3 are pairwise relatively prime. It is straightfor- 
ward to show that 

(n - 1)5 -n + 2 (mod a2 - 3n + 3), 

and then that 

(n- 1 (modn2-3n+3). 

Using these observations and the fact that 3fl 3 (mod n), it is clear that 

X + ***+ X It 

nx1 Xn 

is an integer exceeding 1. 
(c) Let p be an odd prime and k > 1 a natural number. We show that Qn is true 

k for n = p 
For 1 ?i <n-1, let xi= 1, and let x, = pk-I +pk-2 + -- +p + 1. Define m so 

that pk-1 +pk-2 + + p =pm. The binomial theorem yields 

(pk-1 + pk-2 + *. +p + 1)P i=O (Ip )pir 

i=0 1t 

If k < i < pk, then clearly pk divides Pk )p' The power of p dividing i! for 1 < i is 

Ii Ii i i i_ 

pJ+ 2 +P p + 2 + p <i- 

Thus, for 1 < i < k, we see that 

( pk p k( pk ) (pki + 1) 

is divisible by pk-i. Hence 

(pk-l +pk-2 + ... +p + 1)P 1 (modP k). 
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Using this and the fact that pk - 1 = (p - l)(pk-l + * +p + 1), it is clear that 
(x1 + +x)/(nx1 ... x,) is an integer exceeding 1. 

Comment. The editors of this section will consider significant progress on part (c) 
for publication during their term as editors. 

Parts (a) and (b) also solved by Robin Chapman (United Kingdom), Con Amore Problem Group 
(Denmark), Gerald A. Heuer, D. Kipp Johnson, Yanir and Zalman Rubinstein (Israel), Michael Vowe 
(Switzerland), and the proposer. Part (a) was also solved by Can A. Minh (student). 

A Remainder for a Logarithmic Series December 1995 

1486. Proposed by Paul Bracken, University of Waterloo, Waterloo, Ontario, Canada. 

For - 1 < x, x 0 0, define the sequence On(x) by 

(-1) 1 1.()XI 
log( 1 + x) = x- + ( -1) - t(xx 

Show that the sequence (0n) is monotonic in n and find its limit. 

Solution by Frank A. Horrigan, Raytheon Electronic Systems, Tetvksbury, 
Massachusetts. 

By repeated division or other means, 

1 +t= 1t + t2 _t3 + ..+( 1llt' 

Integrating term-by-term, for all x> ->1, 

log(l +x) =| l =X- X2+ - - + +(1"l + dt. 
I + 2 3 4 1 + t 

Excluding the trivial case x = 0, 

O( X) =xn l +t dt + X/ 

for all n > 0. 
As n approaches oo, si" approaches 1 for 0 < s < 1, hence 

lim 6" ( x ) = 1 

To show monotonicity, consider the difference of successive terms, 

+ 1 ( X) - J( x) = ( + Xs/() + Xs)/ ) 

= X f ~(Sl/rl _ sl/(11+l))d 
SnJo (1 + xao s <I );( +I xhein) 

Since the integrand is negative for 0 < s < 1 and - 1 < x, the integral is negative. 
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Therefore (0 ( x)) is monotonic in n, depending on the sign of the variable x: 

Q0(x) <Qi+(x) < I+ for-l<x<O, 

Ql( X) > Oll( x) > I+ for O < x. 

Also solved by David M. Bloomn, Robin Chapman (United Kingdomii), Con Amore Problem Grotup 
(Denmark), Hans Kappus (Switzerland), Be4ijamin G. Klein, Kee-Wai Lau. (Honig Kong), Nick Lor-d 
(England), 0. P. Lossers (The Netherlands), Roger Pinkham, Heinz-Jiirgen Seiffert (Germany), Kenneth 
Schiilling, Michael Vowe (Switzerland), and the proposer. There was one incorrect solution. 

Concurrency in Tangent Circles December 1995 

1487. Proposed by Edward Kitchen, Santa Monica, California. 

Given circles ' and F' with centers 0 and 0', and circles W, and iF2 externally 
tangent to F at points M1 and M2 and internally tangent to F' at points N1 and N2, 
prove that the lines M Nl, M2k, and 00' are concurrent. 

I. Solution by Hoe Teck Wee, Lengkok Bahru, Singapore. 
The result is trivial if Mi, Ni, 0, and O' are collinear, for i = 1 or 2. Hence, we 

may assume that M>, N1, 0, and O' are not collinear, for i = 1 and 2. Then, let P, 
denote the point of intersection between the lines 00' and Mi Ni, and let Oi denote 
the center of the circle Wi. Also, let r, r', and ri denote the radii of W, e', and Wi, 
respectively. In terms of directed line segments, we have 

Oi Mi r ?Ni r 
0M1 _ r~ and 0N -- oM1 r 01 N1 r1 

Applying Menelaus' Theorem to AOO'Oi, we have 

OPi 0'Ni ?i M 

O'Pi 01Ni OMi 

hence 

OPi r 

Therefore, P1 = P2, so MlNJ, M2N2, and 00' are concurrent. 

II. Solution by Michael Woltennann, Washington and Jefferson College, Washington, 
Pennsylvania. 

Let C" with center 0" be externally tangent to C at M and internally tangent to C' 
at N. Then M is between 0 and 0", and N is between O' and 0". If 0, 0', and O" 
are not collinear, then ray NM intersects segment 00' at a point P. Applying the law 
of sines to AOMP and AO'NP, 

OP OM O'P O'N 
sin OMP 

= 
sin OPM and sin/ O'NP 0sin O'PN 
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Since 0"M = O"N, we have /_ OMP 0/ 0"MN _/ O'NP, while / OPM and / O'PN 
are supplementary. Thus 

OP OM 
O'P O'N 

If 0, O' and 0" are collinear, the line MN contains segment 00'. Since the point 
P that divides segment 00' into segments proportional to the radii of C and C' is 
uniquely determined, it follows that lines M1Nj, M2N2, and 00' are concurrent 
at P. 

Also solved by Anchorage Math Solutionis Group, Francisco Bellot Rosado and Maria Ascensio'n Lopez 
(Spain), Robin Chapman (United Kingdom), Con Amnore Problem Group (Denmark), Hans Kappus 
(Switzerland), Victor Kutsenok, Neela Lakshmanan, Jianyuan Liu (China), Kwan Sze Ming (Hong Kong), 
Jose Heber Nieto (Venezutela), David Zhu, and the proposer. 

A Product and Sum Inequality December 1995 

1488. Proposed by Heinz-Jiirgen Seiffert, Berlin, Germany. 

Let n be a positive integer. Show that if 0 l x < x2 < < xn, then 

( +( x i ) ) E H "x > 22 ( n + 1 ), 

with equality if, and only if, xl = x2 X= = 1. (Empty products are understood 
to be unity.) 

Solution by Kee-Wai Lau, Hong Kong. 
From 1 + xi ? 2+/7, it follows that Hn1(1 + Xi) ? 2> xx2 * xx . Thus we need 

only prove that 

,/xi X2 Xn E Hl X n +1 

The left-hand side of this expression equals 

+ X2 X3 .. Xn + x3x4 .Xi + 
VX 1 X 2 *AXI +V xi X1X2 

xi1 
+ +X2 

.. 
Xii-1 vX X2 *vXn 

By the arithmetic mean-geometric mean inequality, the last expression is greater than 
or equal to 

(n +)[(Xx2 Xn)( X2X3 n )( X3X4 Xn) 

X (n+ )(2 X1k 1)]/(2n+2) 

Xi X2 ..Xn-1 Xi X2 
... , 

[nl/2| (1) + 1-2 k)/(2 + 2) 

=(n + 1-1 
x 

+1 
-) 

Since x?, 2Xn-1 > .. >x1, or more generally if Xn+l?k ? Xk for k < [n/21, the 
terms in the last product are greater than or equal to 1. The claimed inequality 
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follows. Retracing the steps in the proof above, it is easy to see that equality holds if 
andonlyifxl=x2= =xII=1. 

Also solved by J. C. Binz (Switzerland), David Callan, Robin Chapman (United Kingdom), Con Amore 
Problem Group (Denmark), Qais Haider Dartvish (Oman), Tim Flood, Jennifer Hoornstra, Jianyuan Litt 
(China), 0. P. Lossers (The Netherlancts), Kwan Sze Ming (Hong Kong), Can A. Minh (student), Kenneth 
Schilling, Achilleas Sinefakopoullos (student, Greece), Michael Vowe (Switzerland), Robert J. Wagner, 
Hoe Teck Wee (Singapore), Western Maryland College Problems Groutp, David Zhu, and the proposer. 

Answers 
Solutions to the Quickies on page 385. 

A856. (i) Form a graph whose vertices are the 2n teams, and place an edge between 
two vertices if they play each other during the first two weeks. (If rematches occur, 
there are two parallel edges.) Clearly every vertex has degree two, so the graph is a 
disjoint union of cycles. Once the outcome of one game within a cycle has been 
determined, there is a unique set of outcomes of the rest of the games within that 
cycle that will result in each team in the cycle having a 1-1 record. Therefore, the 
probability of all 2n teams ending up at 1-1 after two weeks is (1/2)2,,-c, where c is 
the number of cycles. 

(ii) For every team to end up with a 1-1 record, the winners in the second week 
must be exactly the losers from the first week. We may specify the matchings and 
outcomes for the second week by first choosing the n winning teams and then pairing 
each winning team with a losing team. From this, we see that the probability that each 
team's record is 1-1 at the end of two weeks is /( 2n) 

Comment. The method of solution shows that for every two-week schedule, if one 
assumes each team has a chance of winning in each game, it is possible for all 2 n 
teams to end up with a 1-1 record. 

A857. Suppose that al, ... , an,bl,.b. ), b give a counterexample to the claim. Let 
a'i= ak and b' = biak/ai for i = I,., n. Then a'I-bj = (ai-bi)ak/ai2aI-bi. 
Permuting the i's if necessary, we see that a' , . . , a',, b', . . ., b' also give a counter- 
example to the claim. Applying the arithmetic-geometric mean inequality to bl,..., b' 
yields F In l?b < ((l/n)Z1 bl)" ?< ((l/n) En. a')n = ll a', a contradiction. 

A858. I. Since 4(y2 + yz + Z2)3 - 27y2z2(y + z)2 = (y _ Z)2(y +2z)2(z +2y)2, 
the general solution is immediate. 

II. Provided by the Eclitors. The roots of f(t) = t3 - (y2 + yz + z2)t + yz(y + z) 
are y, z, and - y - z. Therefore, the discriminant of this cubic satisfies 

4(y2 + yz + z2)3 27y2z2( y + z)2= (y _ Z)2( y +2z)2(2 + z)2. 

Thus every integral pair (y, z) with yzz( y - z)(y + 2z)(2y + z) = 0 gives rise to two 
integral solutions (x, y, z) to the given equation with xyz = 0. In particular, we may 
take y and z to be distinct, relatively prime, positive integers. 

Correction 
Q841, December 1995. The word "nonhomogeneous" in the problem statement 
should read "homogeneous." 
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REVI EWS 

PAUL J. CAMPBELL, editor 
Beloit College 

Assistant Editor: Eric S. Rosenthal, West Orange, NJ. Articles and books are selected for 
this section to call attention to interesting mathematical exposition that occurs outside the 
mainstream of mathematics literature. Readers are invited to suggest items for review to 
the editors. 

Prime time, New York Times Magazine (6 October 1996) 31. News track: Largest prime, 
Communications of the Association for Computing Machinery 39 (11) (November 1996) 10. 
Holden, Constance (ed.), Random samples: Grassroots search for primes ... , Science 273 
(9 August 1996) 743. Gillmore, Dan, Computer scientists make a prime discovery that's 
too long to print here, Newark (NJ) Star-Ledger (4 September 1996) 5. 

A new largest known Mersenne prime (and largest known prime) has been identified: M34 = 
21,257,787 -1. Like recent predecessors, this Mersenne prime was found by David Slowinski 
and co-workers at Cray Research. But why leave it to Cray? Throughout the U.S. and the 
world, there are millions of microcomputers like yours-idle just about all day (and night). 
Why not donate your computer's unused potential to mathematics? You too-well, your 
Pentium-processor microcomputer-can now join "The Great Internet Mersenne Prime 
Search"! More than 400 volunteers are working with the project, at http: //ourworld. 
compuserve. com/homepages/justf orfun/prime. htm . In fact, the project was 90% of the 
way through checking the very same number when the announcement came from Cray 
Research. 

Calinger, Ronald (ed.), Vita Mathematica: Historical Research and Integration with Teach- 
ing, MAA, 1996; xii + 358 pp, $34.95(P). ISBN 0-88385-097-4. Bos, Henk J.M., Lectures 
in the History of Mathematics, American Mathematical Society, 1993; x + 197 pp, $82. 
ISBN 0-8218-9001-8. 

The first of these two books celebrates and advocates the idea that the history of mathe- 
matics should be incorporated in the teaching of mathematics. Three essays discuss histori- 
ography and the use of sources, the bulk of the book is devoted to specific historical studies, 
and a dozen articles deal with integration of history into mathematics teaching, including 
the origins and teaching of calculus. The second book collects essays by a single researcher 
in the history of mathematics, who presents historical studies but also considers mathe- 
matics in a larger historical context. Particularly engaging is his last essay, "Mathematics 
and its social context ... ," which takes up the big questions about the relations between 
mathematics and society, the mathematical needs of adult life, and historical "laws" about 
the development of mathematics. 

Kolata, Gina, Paul Erdos, 83, a wayfarer in math's vanguard, is dead, New York Times (24 
September 1996) Al, B8. Pearson, Richard, Paul Erd6s: An eccentric titan of mathematical 
theory, dies, Washington Post (24 September 1996). Krauthammer, Charles, Paul Erdos, 
sweet genius, Washington Post (27 September 1996). 

Paul Erdos (1913-1996), with whom hundreds of mathematicians wrote joint papers, died 
of a heart attack while in Warsaw at a mathematics conference. 
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Hively, Will, Math against tyranny, Discover 17 (11) (November 1996) 74-85. Ramirez, An- 
thony, Why the election is like baseball, New York Times (3 November 1996), Section 4, 4. 
Natapoff, A., A mathematical one-man one-vote rationale for Madisonian presidential vot- 
ing based on maximum individual voting power, Public Choice 88 (1996) 259ff. 

Just about when this MAGAZINE is delivered, the electoral college will elect the president of 
the U.S. Voters in November chose electors pledged to candidates, with each state getting as 
many electoral votes as seats in Congress (plus three for the District of Columbia). In some 
past elections, the electoral college did not choose the winner of the popular vote. So, is the 
electoral college a good idea? Yes, says Alan Natapoff, a physicist at MIT, who has modeled 
the electoral process and proved a theorem: Individual voting power-the probability that 
the person's vote will decide the election-is higher under the current electoral system than 
under direct national election, unless the gap in voter preference between the candidates 
is razor thin. "The Madisonian system, by requiring candidates to win states on the way 
to winning the nation, has forced majorities to win the consent of minorities, checked the 
violence of factions, and held the country together." The connection with baseball? In the 
World Series, the most runs doesn't necessarily win the series-they "must be grouped in 
a way that wins games, just as popular votes must be grouped in a way that wins states." 

Hildebrandt, Stefan, and Anthony Tromba, The Parsimonious Universe: Shape and Form 
in the Natural World, Springer-Verlag, 1996; xiv + 330 pp, $32. ISBN 0-387-97991-3. 

Coffee-table books featuring mathematics appear rarely. This issue of this MAGAZINE may 
reach you just in time to order holiday gifts. The less mathematically inclined your friends 
may be, the more appropriate is this book, as it investigates natural forms without using 
mathematical formulas and symbols-even those who profess to detest mathematics can be 
seduced by geometry. This book is a revised and enlarged version of Mathematics and Opti- 
mal Form (W.H. Freeman, 1984). It takes the reader from Maupertuis's principle ("Nature 
always minimizes action"), through astronomical theories, the Steiner problem, stable equi- 
libria, soap films and isoperimetric problems, and on to optimization in nature. It is very 
richly illustrated with drawings, figures, photographs, and reproductions of paintings. 

TUG'95: Questions and answers with Prof. Donald E. Knuth, TUGBOAT: The Communi- 
cations of the )TX Users Group 17 (1) (March 1996) 7-22. Knuth comments on code, Byte 
21 (9) (September 1996) 60. Erickson, Jonathan, Letters, we get letters ... , Dr. Dobb's 
Journal 21 (9) (September 1996) 6. 

"Computer programs are the most complicated things that humans have ever created." 
So says Donald Knuth, world-famous computer scientist. He retired recently at age 57 to 
work full-time on completing his magnum opus, the seven volumes of The Art of Computer 
Programming, which he started in 1962 and suspended for many years to create the T1jX, 
document preparation system and the METAFONT font design system. He estimates that 
it will take 20 more years to finish the remaining four volumes, at a rate of 256 pages per 
year. Knuth was the recipient of the Inamori Foundation's 1996 Kyoto Prize in the category 
of Advanced Technology; along with a suitable plaque came $460,000. 

Passell, Peter, 2 theorists of real-life problems get Nobel, New York Times (9 October 1996) 
(National Edition) Cl, C4. 

James A. Mirrlees (Cambridge University) and William Vickrey (Columbia University) 
were awarded the 1996 Nobel Prize in Economic Science. Vickrey, who died suddenly three 
days after the award was announced, was the inventor of the Vickrey auction, in which the 
highest bidder wins but pays only the second-highest bid. Such an auction encourages the 
bidders to bid the maximum amounts that they are willing to pay. 
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sci.math FAQ [Frequently asked questions for the Usenet newsgroup sci.mathl. http: 
//daisy. uwaterloo . ca/talopez-o/math-faq/math-faq. html. 

Here is a quick and handy source for answers to questions that often pop up in the minds of 
students. Here are some examples: What is 0? and why? Why is it true that 0.9999... = 1? 
What are the details of the attempt to legislate the value of Xr to be 3? How are the digits of 
7r computed? Who has won the Fields Medal? Why is there no Nobel prize in mathematics? 
Who is Bourbaki? What are the 23 Hilbert problems? What is the largest known Mersenne 
prime? It's much easier to access this source, or point students to it, than to figure out 
where to look for printed information, make a trip to the library, photocopy the material, 
etc. The collaborators who issue these little essays are looking for volunteers who would 
expand this online mini-encyclopedia. 

Dubrovsky, Vladimir, Nesting puzzles, Part I: Moving oriental towers, Quantum 6 (3) 
(January-February 1996) 53-57, 49-51; Part II: Chinese rings produce a Chinese monster, 
6 (4) (March-April 1996) 61-65, 58-59. 

Beginning with the Tower of Hanoi and Chinese rings puzzles, this pair of articles explores 
contemporary versions and extensions of such puzzles. It goes on to note their connection 
with dragon curves, which are formed by folding a strip of paper in half multiple times (see 
Nikolay Vasilyev and Victor Gutenmacher, Dragon curves, Quantum 6 (1) (September- 
October 1995) 5-10, 60. 

Donahue, Bill, Jugglers now juggle numbers to compute new tricks for ancient art, New 
York Times (Ntl. Ed.) (16 April 1996) B5, B10. 

This article describes the mathematization of juggling. A juggling pattern can be described 
by a sequence of integers, which both represent the heights of the throws and measure the 
times between successive throws of a ball. Using this "site swap" notation, jugglers can 
design new patterns, watch them be enacted by a computer program, and efficiently re- 
member them. For mathematical details, see Joe Buhler et al., Juggling drops and descents, 
American Mathematical Monthly 101 (6) (June-July 1994) 507-519. 

Naik, Gautam, In sunlight and cells, science seeks answers to high-tech puzzles, Wall Street 
Journal (16 January 1996) A1, A8. 

Wall Street has discovered genetic algorithms. This cliche-ridden article ("back to Darwin," 
"reckless and random ways of nature," "cold, digital domain of silicon-based technology," 
etc.) cites the development of "T-cells" of computer code that seek out potential virus- 
containing code and of an evolving system of self-reproducing systems of rectangles, and of 
an electronic system of drawing portraits of suspects. But those applications aren't where 
the money is-in a short throwaway paragraph, the author mentions companies that use 
genetic algorithms to farm out computer-service jobs and pick stocks for a pension fund. 

Wakeling, Edward (ed.), Lewis Carroll's Games and Puzzles, Dover, 1991; 128 pp, $4.95 
(P). ISBN 0-486-26922-1. Rediscovered Lewis Carroll Puzzles, Dover, 1995; xiii + 79 pp, 
$4.95 (P). ISBN 0-486-28861-7. 

These are two volumes of games and puzzles from the writings of Lewis Carroll, including 
ones extracted from previously unpublished letters, papers, and diary entries. Not all of 
the puzzles and games may be original with Carroll, but all were used by him to entertain 
his colleagues and young friends. Compiler Wakeling has included his own solutions. 
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Paul Erdos, 1913-1996 

Paul Erdos, the world's best traveled 
mathematician, died on September 20, 
1996 in Poland. He was 83. For math- 
ematics this was the end of an era. 
Even among mathematicians, who of- 
ten do not appear to be quite of this 
world, Erdos stood out as sui generis. 
One of the most prolific of twentieth- 
century mathematicians, at the time of 
his death he had published over 1500 
mathematical papers, with more on the 
way. Though his mathematical produc- 
tivity did not match that of the leg- 
endary Euler, with his 70+ volumes of 
published works, it did invite compar- 
isons. 
Erdos started life as a child prodigy, 

encouraged by his parents who were 
both mathematics teachers. He discov- 
ered negative numbers at the age of 
four, and by the age of eighteen he had 
proved a significant theorem in num- 
ber theory, a field where he made many 
important discoveries, including contri- 
butions to an elementary proof of the 
prime number theorem. In later years, 
while maintaining an interest in num- 
ber theory, he shifted to combinatorics. 
When asked about this he replied that 
the remaining open problems in num- 
ber theory were too hard. One area 
of combinatorics where he made some 
of his most profound and interesting 
contributions is Ramsey theory. An- 
other achievement in combinatorics is 
his well-known theorem (with Anning) 
which states that if an infinite number 
of points in the plane are all separated 
by integer distances, then all the points 
lie on a straight line. 

Clearly Erdos will be missed as a pro- 
ductive mathematician. But he will 
also be missed as a source of good- 
natured anecdotes and stories. Math- 
ematicians have often been accused of 
not being interested in the history of 
their subject, only in stories of mathe- 
maticians. Erdos provided them with 
an endless stimulus for stories: an 
Erdos number (the least distance be- 
tween a mathematician and Erdos mea- 
sured by a chain of coauthorships); the 
language Erdese (English pronounced 
as if it were Hungarian); the special 
vocabulary ("epsilon" for "child," "poi- 
son" for "alcohol," "to leave" for "to no 
longer do mathematics"); the "Book" 
(God's list of all the most elegant proofs 
in mathematics), and so on. Also, as 
the most traveled of mathematicians- 
possibly the most traveled of scientists 
of any kind-he served mathematics as 
a twentieth-century Marin Mersenne, a 
one-man clearing-house for information 
on the status of problems in his fields. 
Erdos's incessant traveling around 

the world led to a great number of 
coauthors-over 400-writing in many 
languages, and this led Leo Moser to 
compose the following limerick: 

A conjecture both deep and 
profound 

Is whether a circle is round. 
In a paper of Erdos 
Written in Kurdish 
A counterexample is found. 

After that, Erdos tried to publish a pa- 
per in Kurdish but could not find a 
journal. 
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What has been neglected in some re- 
cent articles on Erdos is mention of his 
basic kindness: his entertaining "ep- 
silons" with tricks and sleight of hand, 
his visiting the families of mathemati- 
cians who had recently died, his loans 
and outright gifts to promising stu- 
dents. Probably one of the explana- 
tions for his extraordinary mathemat- 
ical career was his alinost child-like cu- 
riosity, always about mathematics but 
about other things as well. His first 
question when he arrived on my own 
campus was: "What was the tempera- 
ture in this valley during the Ice Age?" 
(I didn't know.) 
Erdos was acutely aware that life- 

especially one's productive life as a 
mathematician-is finite. He joked 
about his first two-and-a-half billion 
years in mathematics (when he was 
born scientists thought the earth was 

two billion years old; they later re- 
vised the figure upward to four-and-a- 
half billion years!). But for years he 
described himself as old. He would 
on occasion add letters to the end of 
his name like degrees: P.G.O.M. (poor 
great old man), L.D. (living dead-a 
titled added at age 60), A.D. (arche- 
ological discovery-added at age 65), 
L.D. (legally dead-at age 70), and so 
on. At a memorial symposium to honor 
George Polya, Erdos said: "In the Ara- 
bian Nights, they say 'May the King live 
forever.' In Polya's case, we can say, 
'May his theorems live forever."' May 
Erdos's theorems live forever. And may 
all of his proofs turn out to be in the 
"Book." 

G. L. Alexandersoln 
Santa Clara University 
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"THE LAST THEOREM OF 
PIERRE FERMAT, A STUDY" 

The last theorem of Fermat is still as interesting as ever! Here is 
another addition to the literature of this well-known problem. The 
book is a study of the structure of the equation. Certain types of 
numbers emerging in the analysis are defined and their properties 
investigated. The study of the equation gives many identities as 
well as modulo relations. For small primes the modulo properties 
are numerically investigated with the help of a programmable 
pocket calculator. Symmetries of the expressions are used to 
minimize calculation time. 

I.A. Sakmar, University of South Florida, Tampa 
1994, 188 pp 93-92810, Hardcover $50.00 
Shipping & Handling: 
US $2.50. Airmail: US & Canada, $4.50; Europe $9.00. 
Mail Orders To: P.O. Box 752, Plant City, FL 33564 

Coming this winter... 
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CALIFORNIAanDiego, 

For more details, visit "Meetings" under 
MAA homepage at: http://www.maa.org 
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La oratory Experiences 
in Group Theory 
A Manual to be Used with 
Exploring Small Groups 

&Ad V If- _ _j" Ellen Maycock Parker 
Series: Classroom Resource Materials 

A lab manual with software for introductory courses 
in group theory or abstract algebra 

Laboratory Experiences in Group Theory is a workbook 
of 15 laboratories designed to be used with the software 
Exploring Small Groups as a supplement to the regular 
textbook in an introductory course in group theory or 
abstract algebra. Written in a step-by-step manner, the 
laboratories encourage students to discover the basic 
concepts of group theory and to make conjectures from 
examples that are easily generated by the software. 
The labs can be assigned as homework or can be used 
in a structured laboratory setting. Since the software is 
user-friendly and the laboratories are complete, stu- 
dents and faculty should have no difficulty in using the 
labs without training. 
Most students find that the laboratories provide an 
enjoyable alternative to the "theorem-proof-example" 
format of a standard abstract algebra course. At the end 
of the semester, one student wrote in his evaluation of 
the course: 
I am truly grateful for the laboratory component... Work 
on the computer helped to make the abstract theory 
more concrete... One of the best things about the labs 
was that we formed our own conjectures about the pat- 
terns we saw...I believe that the progression of (1) lab, 

(2) conjecture, (3) class discussion, and (4) proof was 
highly beneficial in gaining understanding of the 
abstract material of the course. 
Table of Contents: 1. Groups and Geometry; 2. Cayley 
Tables; 3. Cyclic Groups and Cyclic Subgroups; 4. 
Subgroups and Subgroup Lattices; 5. The Center and 
Commutator Subgroups; 6. Quotient Groups; 7. Direct 
Products; 8. The Unitary Groups; 9. Composition 
Series; 10. Introduction to Endomorphisms; 11. The 
Inner Automorphisms of a Group; 12. The Kernel of an 
Endomorphism; 13. The Class Equation; 14. Conjugate 
Subgroups; 15. The Sylow Theorems; Appendix A. 
Table Generation Menu of Exploring Small Groups 
(ESG); Appendix B. Sample Library of ESG; Appendix 
C. Group Library of ESG; Appendix D. Group 
Properties Menu 

Exploring Small Groups, the software packaged with 
this lab manual, is on a 31/2" DD PC compatible disk. 
This is a DOS program that can be run in Windows. 
The software was developed by Ladnor Geissinger, 
University of North Carolina at Chapel Hill. 

112 pp., Paperbound, 1996 
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Catalog Code: LABEJR 
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Real-Life Problems From 
Women On The Job 
Marla Parker, Editor 

She Does Math! presents the career histories of 38 pro- 
fessional women and math problems related to their 
work. Each history describes how much math the 
author took in high school and college; how she chose 
her field of study; and how she ended up in her current 
job. Each of the women presents problems that are typi- 
cal of those she has faced in her job. The problems 
require only high school mathematics for their solu- 
tion. 
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Who should have this book? 
Your daughter, your granddaughter, your sister, your 
former math teacher, your students-and young men 
too. They want to know how the math they study is 
applied, and this book will show them. 

There are many reasons to buy this book: 
* By reading the career histories of the women profiled 
in this book, young people will learn that if they take 
mathematics courses in high school and college they 
will be qualified to enter interesting technical fields 
and earn good salaries. 
> The problems have special appeal to students who 
are beginning to think about career choices. 
> The book provides practical information about the 
job market in an interesting, innovative way. 
> Strong female role models who work as successful 
technical professionals are presented. 
> The problems are interesting and challenging, yet 
require only high school mathematics. They demonstrate 
how good math skills are applied to real-life problems. 
Read what others have said about She Does Math! 
Finally - a practical, innovative, well-written book 
that wi1l also inspire its readers. The wonder is...it's a 
mathematics text and a biography! The idea of 
women telling their own career stories, emphasizing 

the mathematics they use in their jobs is extremely 
creative. This book makes me wish that I could go 
through school all over again! 

Anne L. Bryant, Executive Director 
American Association of University Women 

She Does Math! will undoubtedly appeal both to stu- 
dents who already enjoy math and want to get a view of 
potential career paths, and also to students who want to 
better understand the relevance of their math classes to 
their future careers. It is an absorbing look into the lives 
of some very inspiring and talented women! 

Susanne Hupfer and Elisabeth Freeman 
Yale University 

This collection is a wonderful confirmation that real 
women do math. They do math in a surprising variety 
of careers, fully enjoying the challenge and rewards of 
solving complex problems. This is a book for young 
women and men, a book for their teachers and parents, 
a book that informs about the possibilities that mathe- 
matics affords to all. It is also a book that will engage 
you in real-life mathematics! - Doris Schattschneider 

Moravian College 
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