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Plotting and Scheming with Wavelets

Dedicated with great affection to Alex F. T. W. Rosenberg,
on the occasion of his 70th birthday

COLM MULCAHY

Spelman College
Atlanta, GA 30314

1. Introduction

Wavelets are acquiring a visibility and popularity that may soon be on the scale first
enjoyed by fractals a few years back. Like fractals, wavelets have attractive and novel
features, both as mathematical entities and in numerous applications. They are often
touted as worthwhile alternatives to classical Fourier analysis, which works best when
applied to periodic data: wavelet methods make no such assumptions. However, the
mathematics of wavelets can seem intractable to the novice. Indeed, most introduc-
tions to wavelets assume that the reader is already well versed in Fourier techniques.

Our main goal is simple: to convince the reader that at their most basic level,
wavelets are fun, easy, and ideal for livening up dull conversations. We demonstrate
how elementary linear algebra makes accessible this exciting and relatively new area at
the border of pure and applied mathematics.

In Plotting, we explore several ways of visually representing data, with the help of
Matlab software. In Scheming, we discuss a simple wavelet-based compression
technique, whose generalizations are being used today in signal and image processing,
as well as in computer graphics and animation. The basic technique uses only
addition, subtraction, and division by two! Only later, in Wavelets, do we come clean
and reveal what wavelets are, while unveiling the multiresolution setting implicit in
any such analysis.

In Averaging and Differencing with Matrices, which may be read indepen-
dently of Wavelets, we provide a matrix formulation of the compression scheme. In
Wavelets on the World Wide Web we mention a natural form of progressive image
transmission that lends itself to use by the emerging generation of web browsers (such
wavelet-enhanced software is already on the market).

In Wavelet Details, we attempt to put everything in context, while hinting at the
more sophisticated mathematics that must be mastered if one wishes to delve deeper
into the subject. Finally, in Closing Remarks, we mention some other common
applications of wavelets.

Along the way we find ourselves trying out an adaptive plotting technique for
ordinary functions of one variable that differs from those currently employed by many
of today’s popular computer algebra packages. While this technique, as described
here, is limited in its usefulness, it can be modified to produce acceptable results.

We were much inspired by Stollnitz, DeRose, and Salesin’s fine wavelets primers
([15, 16D, which, along with [17], [18], [19], we recommend heartily to beginners who
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desire more details. More general surveys can be found in [7] and [11]. Although the
wavelets we discuss here had their origins in work of Haar early in this century, the
subject proper really gathered momentum only in the last decade. The historical
development of wavelets is quite complex, as the main concepts arose independently
in several different fields. We do not cite the numerous groundbreaking papers in
these fields, leaving that to the books and surveys listed in the bibliography. It’s a
fascinating story, combining ideas first studied by electrical engineers, physicists, and
seismologists, as well as pure mathematicians. For an especially readable account of
how it all happened, we recommend Barbara Burke Hubbard’s The World According
to Wavelets [10], a remarkable book which also goes into greater detail about wavelet
applications than we do. A more mathematically concise version of this story can be
found in Jawerth and Sweldens” survey paper [11].

2. Plotting

We begin by reviewing standard ways of plotting discrete data sets, in particular,
sampled functions of the form y =f(x), and two-dimensional digital images. The
limitations inherent in attempts to plot functions by uniform sampling will lead us, in
the next section, to suggest a wavelet-based scheme to work around this difficulty. The
need for adaptive plotting techniques will become obvious. The real purpose of this
section is to drum up support for some sort of data compression.

Suppose we have a finite set of planar data points (x, y), which might be samples of
a function y =f(x). A common method of displaying these data is to plot the
individual points and then join adjacent points with line segments; this is precisely
what happens when many computer algebra packages graph functions. Graphing with
Matlab’s plot command, for instance, requires us to pick the x-values to be used.
Plotting y = sin(15x) and y =sin(90x) this way, on the interval [0, 1], using 32
equally spaced x-values, yields the pictures in Ficuge 1. The true nature of y = sin(15x)
can be safely inferred from the first plot, as increasing the number of points sampled
verifies. The second plot is another story, however.

Ficure 1(b) suggests a function whose oscillations exhibit a pulsing pattern, al-
though, symbolically, we expect a horizontally telescoped version of the preceding
graph. The apparent pulsing behavior is an artifact of sampling uniformly at 32 points:
sin(90x) has frequency 5= = 14.3239, which is just under half the sampling frequency.

1t
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0.61
0.4+
0.2r

0
1-02¢
1-0.4}
1-0.6 1
1-08} |
—-1F 1

0 01 02 03 04 05 06 07 0809 1 0 01 02 03 04 05 06 07 08 09 1
FIGURE 1
Plots of y = sin(15x) and y = sin(90x), using 32 uniformly sampled points


http://www.jstor.org/page/info/about/policies/terms.jsp

VOL. 69, NO. 5, DECEMBER 1996 325

While we have just enough information to determine or reconstruct the function
[8, p. 340], the graphical anomaly (known as aliasing) is not too surprising. Using
a few more points yields the anticipated 6-fold repetition of the pattern seen in
Ficure 1(a).

Ficure 1 makes one thing abundantly clear: using uniformly-spaced sample points
isn’t the smartest approach, unless we are prepared to use a lot of points. Much better
pictures are obtained from Matlab’s fplot command, and from the corresponding
Maple or Mathematica commands. These commands produce adaptive plots, with
points clustered where the function seems to exhibit great variation. These adaptive
plotting routines examine angles between connecting line segments in provisional
internally-generated plots based on uniform sampling. Having identified regions of
great variation, they subdivide certain intervals further before producing a visible plot.
(For details, see [12, p. 216, [9, pp. 303-304], [22, pp. 579-584].) In the next section
we will illustrate how wavelets give rise to an adaptive plotting scheme that does not
require us, or the computer, to consider angles first while peeking at default plots.

For the sorts of (differentiable) functions considered so far, intuition correctly
suggests that, on the one hand, if we continually replot a function, sampling more and
more frequently (uniformly or otherwise), we get a sequence of pictures that con-
verges to the true graph. On the other hand, no matter what scale we view (or print)
at, there comes a stage past which it is impossible to detect the use of additional
sampled points. Just how many points need we plot to give the illusion of a correct
graph? The answer depends very much on the amount of variation the function
possesses over the interval in question, as well as on the size of the picture we are
going to look at, as the next examples make clear.

Some functions are beyond redemption from the point of view of plotting

“and displaying at any reasonable scale. A function like y = sin(+), which has in-
finitely many extrema on (0,1], is going to give this or any other plotting routine
a run for its money. The (algebraically) innocent-looking function y = sin(e®**9)
achieves so many extrema (a staggering |e''/m—1/2| —[e°/m—1/2] +1=

19058 — 2579 + 1 = 16480, to be precise) in the interval [0, 1], that the plot in Ficure
2(a), which is based on uniform sampling at 32 points, is totally misleading. Worse
still, the more points we plot (even if we plot adaptively) the denser the pictures
appear, on account of the nonzero thickness of depicted line segments. Ficure 2(b)
shows what we get if we sample uniformly at 256 points; increase this number further,
and the plots start to fill up with connecting line segments. Sadly, given the natural

0 0102 03 04 05 06 07 08 09 1 0 01020304 0506 07 0809 1

FIGURE 2
Plots of y = sin(e?**?) using 32 and 256 points, respectively
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physical limitations of plotters and printers, there is little hope in this life of getting an
accurate graph of y = sin(e®**®) on [0, 1], and we hereby admit defeat.

Of course, linear interpolation of sampled points is just one way of plotting: instead
of joining the points with line segments, we could use the y-values as step levels for a
staircase effect. Ficures 3(a) and 3(b) illustrate step function alternatives to Ficure 1(a)
and Ficure 2(a) respectively, namely y = sin(15x) and y = sin(e*>**?) using the same
uniformly sampled points.
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FIGURE 3
Stairs plots of y = sin(15x) and y = sin(e>**°) using 32 uniformly sampled points

Purists may balk at the vertical lines connecting the steps in these pictures, which
were generated using Matlab’s stairs command, but for our purposes these
uninvited guests are quite harmless. While these plots leave a lot to be desired, just as
the linearly interpolated plots earlier did, the staircase method will lead to better and
better approximations of the true graph when more points are used, although a lot
more are needed to get away from the jaggies and obtain a continuous effect. (That
continuous functions can be approximated on [0, 1] to arbitrary precision by piecewise
linear functions, or by step functions, is a simple consequence of their being uniformly
continuous on compact intervals [2, 24.4, 24.5].) _

There are also questions of data storage and transmission. These become particu-
larly crucial when we explore higher-dimensional analogues of data points in the
plane, such as digital images.

The images of Emmy Noether in Ficure 4 are derived from two-dimensional arrays
of pixels—numbers that represent gray levels ranging from black (minimum number)
to white (maximum number). These can be thought of as data points (x, y, z), where
z measures the gray level at position (x, y): we draw a two-dimensional array of small
squares, each shaded a constant gray level z according to its position (x, y) in the
array. What we really have here are two-dimensional step functions—viewed from
above—where the steps are shaded according to their height. (Color images can be
dealt with by decomposing into red, green, and blue components, and treating each of
these like grayscales.)

Ficure (4a) is composed of 256 X 256 pixels; so it is derived from a matrix of
2562 = 65536 pieces of data, each representing a gray level. To produce Ficure 4(b)
we extracted a 64 X 64 submatrix from the original 256 X 256 matrix; the submatrix
shows the region around the eyes. This second image requires 64> = 4096 pieces of
data to store. Due to the lower resolution it is noticeably more “blocky;” we can
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FIGURE 4
Emmy Noether—in person and up close

explicitly see the steps that make it up. Both images use 256 = 2° levels of gray, and
so are called 8-bit images.

Clearly, it requires a lot of data to represent an image in this way, and that leads to
practical problems. For one thing, a standard 1.44MB high-density floppy disc can
only accommodate a handful of large, high-quality, color images. Furthermore, image
files are time-consuming to transmit, as anybody who has viewed pictures on the
World Wide Web can attest. In the images of Emmy Noether, there are regions of
little or no variation. Our goal is to take advantage of these somehow, and come up
with a more economical way to store the matrices that represent the images.

3. Scheming

Here we get down to business and describe an elementary wavelet scheme for
transforming, and ultimately compressing, digital data. Whether these data represent
samples of a function, a matrix of gray levels, or something else entirely, has no
bearing on the scheme itself. While wavelets are behind the ideas presented, we defer
any further mention of the “W” word until the next section. Readers who wish to
duplicate the results and pictures found here can proceed directly to Averaging and
Differencing with Matrices upon reading this section.

After we describe the basics of the scheme, and look at some examples, we explain
what we really mean by compression. A key ingredient is the standard technique for
storing large sparse matrices in terms of their nonzero entries—values and locations
only—rather than in matrix form.

As motivation, we first consider the images in Ficure 5, which use only two shades
of gray. How much information is required to store the first one? If we assume that
we have black unless specified otherwise, we need only say where the white is, so it
seems reasonable to claim that two pieces of information suffice. If the image is a
4 = 22 pixel image, we could store the facts that pixels (1,2) and (2, 1) are white. But
what if the image is, say, a 65536 = 2562 pixel image, which just happens to be
composed of large black and white blocks? We will show how to use two pieces of
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FIGURE 5
How many pieces of information are needed to store these simple images?

information to store the image in this case too; the principle works regardless of the
actual resolution.

Next consider the more complex image in Ficure 5(b). If we treat this as a 16 = 4”
pixel image, we see eight white and eight black blocks, so we could argue that eight
pieces of information suffice to specify this arrangement. But we can do better if we
also use the fact that several of the white blocks are adjacent to each other. We will
see presently that only five pieces of information are needed, even if the image is at a
greater resolution than is apparent. (For a hint as to why five might be enough,
consider the top left quarter of this array as a copy of the first arrangement.)

We now move on to our main goal: describing how to transform arrays of data to a
form in which regions of “low activity” in the original become easy to locate in the
transformed version. Since matrices consist of neatly stacked rows of numbers, we
begin with strings of data. Our method will have immediate application to plotting
y =f(x) type functions, as we can identify uniformly sampled functions with data
strings.

Consider a string of eight data. This could, for instance, be uniform samples of a
function, or a row of an 8 X 8 pixel image. In order to avoid fractions below, we use
these specially cooked-up numbers:

64 48 16 32 56 56 48 24

We process these in several stages, in a manner commonly referred to as averaging
and differencing, which we will explain in a moment. Successive rows of the table
show the starting, intermediate, and final results.

64 48 16 32 56 56 48 24
56 24 56 36 8 -8 0 12
40 46 16 10 8 -8 0 12
43 -3 16 10 8 -8 0 12
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The first row is our original data string, which we can think of as four pairs of
numbers. The first four numbers in the second row are the averages of those pairs.
Similarly, the first two numbers in the third row are the averages of those four
averages, taken two at a time, and the first entry in the fourth and last row is the
average of the preceding two computed averages.

The remaining numbers, shown in bold, measure deviations from the various
averages. The first four bold entries, in the second half of the second row, are the
result of subtracting the first four averages from the first elements of the pairs that
gave rise to them: subtracting 56,24, 56,36 from 64, 16,56,48, element by element,
yields 8,~8,0,12. These are called detail coefficients; they are repeated in each
subsequent row of the table. The third and fourth entries in the third row are
obtained by subtracting the first and second entries in that row from the first elements
of the pairs that start row two: subtracting 40,46 from 56,56, element by element,
yields 16,10. These two new detail coefficients are also repeated in each subsequent
row of the table. Finally, the second entry in the last row, —3, is the detail coefficient
obtained by subtracting the overall average, 43, from the 40 that starts row three.

It is not hard to see that the last average computed is also the overall average of the
original eight numbers. This has no effect on the shape of (any plot of) these data: it
merely anchors the data vertically. The seven detail coefficients are what really
determines the shape.

We have transformed our original string of eight numbers into a new string of eight
numbers. The transformation process is, moreover, reversible: we can work back from
any row in the table to the previous row—and hence to the first row—by means of
appropriate additions and subtractions. In other words, we have lost nothing by
transforming our string. What have we gained? The opportunity to fiddle with the
“mostly detail” version! If we alter the transformed version, by taking advantage of
regions of low activity, and use this doctored version to work back up the table, we
obtain an approximation to the original data. If we are lucky, this approximation may
be visually close to the original.

Our string has one detail coefficient of 0, due to the adjacent 56’s in the original
string; this is one region of low activity. The next smallest detail coefficient (in
magnitude) is the —3. Let’s reset that to zero, putting 43,0, 16, 10,8, — 8,0, 12 in the
last row of a blank table, and work our way back up by adding and subtracting as
indicated above. The completed table looks like this:

67 51 19 35 53 53 45 21
59 27 53 33 8 -8 0 12
43 43 16 10 8 -8 0 12
43 0 16 10 8 -8 0 12

The first row in this table is our approximation to the original data. In Ficure 6(a)
we plot the original and the approximation, the latter using dashed lines; for reasons
which will be clear later, we have plotted the string as y-values against eight equally
spaced x-values in [0, 1]. While the differences are discernible, many observers would
be hard-pressed to distinguish the plots if seen one at a time.

In Ficure 6(b) we plot the original against the approximation (59 59 27 27 53 53
45 21), obtained by the above procedure after dropping two more detail coefficients,
namely the —8 and the 8. Considering how few data (only five numbers) this
approximation is based on, it’s surprisingly good.
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FIGURE 6
Eight pieces of data versus approximations based on six and four detail coefficients, respectively

Before we go on, we note that the process can be generalized to strings of any
length. We can always pad at the end, say with zeros, until a string has length equal to
a power of two.

To appreciate the full potential of this scheme, we must think big. Starting with a
string of length 256 = 28, eight applications of averaging and differencing yield a
string with one overall average and 255 detail coefficients. We can then fiddle with
this and work back to an approximation of the original.

In general the compression scheme works like this: Start with a data string, and a
fixed nonnegative threshold value &. Transform the string as above, and decree that
any detail coefficient whose magnitude is less than or equal to & will be reset to zero.
Hopefully, this leads to a relatively sparse string (one with a high proportion of zeros),
which is thus compressible when it comes to storage. This process is called lossless
compression when no information is lost (e.g., if &= 0); otherwise it’s referred to as
Zossy compression (in which case &> 0). In the former case we can get our original
string back. In the latter we can build an approximation of it based on the altered
version of the transformed string. The surprise is that we can throw out a sizable
proportion of the detail coefficients, and still get decent results.

Let’s try this for y = ¢~'%%5in(100x) on [0, 1], which has a large region of relatively
low activity. The plots in Ficure 7 are based on 32 and 256 uniformly sampled points.
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FIGURE 7
Plotsof y=¢~ 10% ¢in(100 %) using 32 and 256 uniformly sampled points, respectively
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As Ficure 7(b) illustrates, half of the points plotted are essentially wasted. Consider
the string of 256 y-values used to derive this plot, which range from —0.6246 to
0.8548. After eight rounds of averaging and differencing, we get a transformed string
which ranges from —0.2766 to 0.4660. Dumping all detail coefficients less than or
equal to 0.04 in magnitude, we get an altered transformed string with 32 nonzero
entries. From this sparse string we build an approximation of the original string, which
is plotted in Ficure 8(a). Despite its limitations, this does a better job than Ficure 7(a)
of conveying the flavor of the actual graph. Ficure 8(b) shows the even better picture
obtained when we reduce the cut-off threshold to 0.01, in which case the altered
transformed string has 70 nonzero values.
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0.6 0.6
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FIGURE 8

Approximations to y = ¢~ % sin(100x) using 32 and 70 detail coefficients, respectivel
PP y g P y

The reason why such low thresholds (relative to the range of values) give good
results here, using few detail coefficients, is that this function’s pulse is rather weak in
half of the interval of interest. Using 70 detail coefficients out of 256 gives a
“compression ratio” of around 3.5: 1.

There is a subtlety here worth highlighting: the plots in Ficure 8 were generated
from just 32 and 70 nonzero numbers, respectively, in sparse strings of length 256 (the
doctored transformed strings). However, the plots themselves used all 256 (mostly
nonzero) numbers obtained from those strings by reversing our averaging and
differencing process. The lossy compression comes into play once we note that it takes
significantly less space to store sparse strings of length 256—with only 32 or 70
nonzero entries—than arbitrary strings of length 256.

The approximation technique just outlined has shortcomings as an adaptive plotting
scheme—shortcomings that were apparent as early as our first efforts in Ficure 6.
Most obviously, modest-sized data sets such as those we have been considering lead to
thresholded strings of data that produce unacceptably jagged plots. This is because
thresholding often yields data strings with constant stretches (horizontal steps) fol-
lowed by dramatic leaps or drops (steep segments). Perhaps surprisingly, regions of
lower activity produce the worst “jaggies.” A less obvious problem, which Ficure 6(a)
illustrates, is that the range of y-values in the approximation may exceed the range of
the original y-values. In Wavelet Details we will mention smoother schemes that
largely avoid these problems.

We explored the above transformation technique in some detail because we can
repeat it for image data sets with almost no extra work. What's more, we get better
results, since realistic images consist of much larger data sets, in which steps have to
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be quite extreme to produce visible blockiness (the higher-dimensional analogue of
jaggedness).

We could simply concatenate the rows to obtain one long string, but then we
wouldn’t be able to exploit natural correlations between adjacent rows of real-world
image matrices. Instead, we treat each row as a string and process as above, obtaining
an intermediate matrix, and then apply exactly the same transformations to the
columns of this matrix to obtain a final row- and column-transformed matrix.

Specifically, to apply the scheme to a 256 X 256 matrix, we do the averaging and
differencing eight times on each row separately, and then eight times on the columns
of the resulting matrix. Averaging and differencing columns can also be achieved by
transposing the row-transformed matrix, doing row transformations to the result of
that transposition, and transposing back. The final result is a new 256 X 256 matrix,
with one overall average pixel value in the top left hand corner, and an awful lot of
detail elements. Regions of little variation in the original image manifest themselves as
numerous small or zero elements in the transformed matrix, and the thresholding
principle described earlier above can be used to effect lossy image compression.

First, let's go back to the simple images in Ficure 5. Suppose both are 256 X 256
pixel images, composed of 128 X 128 and 64 X 64 monochromatic sub-blocks, respec-
tively. If black pixels match up with matrix entries of 0, and white ones with 1, then
performing eight row and then eight column transformations on the matrices corre-
sponding to the images, we obtain matrices that are extremely sparse. The only
nonzero entries are bunched up in these 4 X 4 submatrices in their respective upper
left-hand corners:

S
S O O O
=N el el =]
w- O O O
(= = ]

S O O =
S O =
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Thus the first transformed matrix has only two nonzero entries—whereas the second
has five. Storing these matrices efficiently leads to a form of lossless compression. The
original images can be reconstructed exactly from these smaller data sets.

Now we move on to lossy compression. Applying our thresholding scheme to
images with only a few gray levels, such as those in Ficure 5, is guaranteed to produce
poor results, because the averaging process introduces numbers which, if altered and
transformed back to image form, correspond to gray levels that were not originally
present.

Consider the 8-bit image Noetherian image in Ficure 4(a), which contains a great
deal of black; in fact, black accounts for 20% of the pixels. When we apply eight row
and eight column transformations, we obtain a matrix 30% of whose entries are zero;
an increase that can be attributed to the other areas of little variation in the original.
For appropriate choices of e—depending on the range of numbers in the matrix used
to represent the gray levels of the original image—we get the compressed images in
Ficure 9. Note the concentration of small blocks near the hairline and collar line, and
in the facial features, illustrating the adaptiveness of this scheme. The extreme
blockiness of these images is due to the nature of averaging and differencing, which is
equivalent to working with certain step functions, as we will see in the next section.

The first image uses 6558 out of 9562 = 65536 (actually 65535) coefficients, and the
second only 1320. In a sense, we could claim compression ratios of 10:1 and 50:1,
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FIGURE 9
Noetherian compression—using 10% and 2% of the detail coefficients, respectively

respectively, but in view of the fact that the original matrix has only 45870 nonzero
elements, a more realistic claim might be ratios of 7:1 and 35:1, respectively. Indeed,
ratios very close to these turn up when we check how many bytes Matlab needs to
store the sparse forms of these matrices, whether within a Matlab session workspace
or in external data files. However we compute compression ratios, it’s impressive that
the images are recognizable at all, considering how little information was used to
generate them.

A modification of the above approach, known as normalization, that will likely seem
unmotivated for now, yields significantly better results: In the “averaging and differ-
encing” process, divide by V2 instead of 2 (so that a pair a and b is processed to yield
(a+b)/V2 and (a —b)/V2). Perhaps unexpectedly, this leads to compressed im-
ages that are more acceptable to the human eye than those above. Ficure 10(a) shows

FIGURE 10
Normalized compression—using 2% and 1% of the detail coefficients, respectively
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the normalized compressed version of Ficure 9(b); both images use 2% of the
coefficients. Ficure 10(b) shows a normalized compressed image that is visually
comparable to—if not better than—Ficure 9(b), but uses only 1% of the coefficients.

We freely admit that compression ratio computation is a rather delicate matter, but
the compression schemes we have outlined are surely worthwhile, no matter how one
computes these ratios.

We remark that for random matrices, whose entries are interpreted as representing
gray levels, there is no hope of any compression. The transformed versions tend to
have no nonzero entries to speak of, and thresholding leads to approximations which
look unacceptably non-random.

We summarize the central idea of the compression scheme: Data that exhibit some
sort of structure can be efficiently stored in equivalent form as sparse matrices;
specifically, in “transformed and sparse” form for lossless compression, and in
“transformed, thresholded, and sparse” form for lossy compression. To view the data,
or an approximation of it, one simply “expands” to non-sparse form and applies the
inverse transformation.

(At this point, readers may skip to Averaging and Differencing with Matrices if
they wish. There we describe one matrix multiplication implementation of the
compression scheme just discussed.)

4. Wavelets

Our principal aim here is to put our earlier discussions on a firmer mathematical
foundation, and to acquaint the reader with some of the standard concepts and
notations used in the general study of wavelets. What are wavelets, anyway? Before
we try to answer this question, we present an alternative vector space description of
our discrete, 8-member data sets.

First we identify data strings with a certain class of step functions. A string of length
k is identified with the step function on [0, 1] which (potentially) changes at k — 1
equally spaced x-values and uses the string entries as its step heights. For instance,
the string of y-values arising from uniformly sampling sin(15x) 32 times in [0,1] is
identified with the step function plotted in Ficure 3(a). These step functions can in
turn can be thought of as linear combinations of dyadically dilated and translated unit
step functions on [0, 1). We now explain this in some detail.

Consider the Haar scaling function:

80 |

Note that ¢ satisfies a scaling equation of the form ¢(x) =X, z¢,¢(2x — i), where
in our case the only nonzero ¢;’s are ¢y =c¢, = 1, ie., d(x) = p2x) + $(2x — 1).

For each 0<i<2%—1, we get an induced (dyadically) dilated and translated
scaling function

1 on |0, 1)
0 elsewhere.

¢ (x) = ¢(2%x —1).
These eight functions form a basis for the vector space 7°® of piecewise constant
functions on [0, 1) with possible breaks at §,2,3,..., 7. Note that ¢§ is 1 on [0,3)
only, ¢? is 1 on [§,2) only, ¢3 is 1 on [2,2) only, and so on. Ficure 11 shows three of
these basis functions together with a typical element of 773, Actually, the last plot in

Ficure 11 shows the rather special element
64p5 + 48¢7 + 1635 + 325 + 56 + 56HS + 48P; + 247 € 770,
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FIGURE 11
The first three of the eight basis functions ¢ (0 <i < 7) and an element of 7

which is just another way of thinking of our earlier data string
64 48 16 32 56 56 48 24.

In contrast to the piecewise linear plot in Ficure 6, we now have a step function
representation of our data string. Similarly, any string of length eight can be identified
with an element of 7. We can describe the averaging and differencing scheme from
the last section in terms of this version of data strings, but first we need some more
vector spaces. As above, the four functions ¢; defined by

$2(x) = (2 — 1),

for 0<i<2%—1, form a basis for the vector space 7'® of piecewise constant
functions on [0, 1) with possible breaks at §,%,%; the two functions ¢, defined by

d’il(x) = ¢(21x - i)’

for 0<i<2'—1, form a basis for the vector space "' of piecewise constant
functions on [0,1) with a possible break at §; and ¢ = ¢ itself is a basis for the
vector space 7°° of constant functions on [0, 1). Note that 7’ c 7' c7?c 73,

We can identify the various averages derived in Scheming with elements of these
new vector spaces, by treating these averages as lower-resolution versions of the
original string. Specifically, we match up 56,24,56,36 with 56¢; + 24¢7 + 56¢; +
362, then 40,46 with 400} + 466!, and finally 43 with 43¢ = 43¢.
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It only remains to find a new interpretation for the detail coefficients. This is where
wavelets finally enter the picture—fasten your seatbelts! Consider the inner product

f.g=[f)a(t) de

defined on 7°3; two functions are orthogonal if and only if their product on [0, 1]
encloses equal areas on each side of the horizontal axis. For each j =0, 1,2, we define
the wavelet space 77 to be the orthogonal complement of 27/ in 77*!, so that we
get the (orthogonal) direct sum decomposition:
it =yieyl.
Certainly 7° c7' c#?; in fact we have
3= oy =7'ow' e =v"0v’owt ow?.

Each 77 has a natural basis { x/: 0 <i <2/ — 1} which we will describe in a
moment. Expressing step functions in 7° in terms of these new bases brings us to
the various detail coefficients we encountered before, which will henceforth be known
as wavelet coefficients.

The mother Haar wavelet is defined by

1 on[O,%)
x(x) =1 -1 on [5,1)

0 elsewhere.

(Equivalently, we could have defined x(x):= ¢(2x) — $(2x — 1).) Notice that { x} is
a basis for 77 since y is clearly orthogonal to ¢. The four functions

x2(x) = x(2%x —i),

for 0 <i <22 — 1, form a basis for 7%, because, on the one hand, they are orthogonal
to the corresponding functions ¢? (0 < i < 3) which form a basis for the subspace 7
of 773, and, on the other hand, they are visibly orthogonal to each other. (See
Ficure 12.)

Similarly, the two functions x;' defined by

xi'(x) = x(2'x = i),

for 0 <i <2!'— 1, form a basis for 7.
In present notation, the three steps in the averaging and differencing transforma-
tion in the preceding section correspond to the following chain of identities:

64p5 + 487 + 163 + 3235 + 56 + 56 p2 + 482 + 2463
=562 + 247 + 5637 + 367 + 8xF — 8xE+ 0x5 + 12 x3
=40, + 4641 + 16x, + 10x, + 8xF —8x + O xs + 12x7
=43¢0 —3xd+16xs +10x] + 8xZ —8xi +0x3 + 12x;.

The final, fully-transformed version, consists of one overall average and seven wavelet
coeflicients; this is simply a decomposition with respect to a very special basis.
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FIGURE 12

The four wavelets x> (0 <i < 3), which form a basis for 72

Our earlier dumping of the smallest detail coefficients, to effect a good approxima-
tion to the original data, boils down to setting some of the wavelet coefficients to zero.
In our first compression example, we approximated

64y + 487 + 1603 + 3293 + 560 + 563 + 4893 + 246
=43¢y —3xs +16 x5 +10x] +8 x5 —8x] + 0x5 + 12 x3

by the element 43¢g + 0x + 16 x; + 10 x| + 8xZ — 8x7 + 0x; + 12 3. These are
illustrated in the stairs plots in Ficure 13. As in the zig-zag plots in Ficure 6(a), the
two data strings are difficult to tell apart visually.

These ideas can be extended in the obvious way: For each nonnegative integer j, let
7°J be the vector space of piecewise constant functions on [0, 1) with possible breaks
at 1/27,2/27,3/27,...,1 =1/2/. Then the 2/ functions ¢/ defined by ¢/(x):=
¢(2/x —i), 0<i<2/—1, form a basis for /. We thus get an infinite ascending
chain' of vector spaces 7 °c 7' c7?c...cy7/c7i/* c ..., each of which is
an inner product space with respect to the inner product {f, g) == [, f(¢)g(t) dt. The
wavelet space 77 is then defined to be the orthogonal complement of 7/ in 77/*!.
The functions

Xi(x) = x(20x — ),

1Emmy Noether’s presence in these pages might prompt one to ask whether this chain stops! Ideally, no,
but in practice, yes: for sampled signals there is a limit to the resolution that can be attained.
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FIGURE 13
Spot the difference—a step function and an approximation of it

for 0 <i <2/ —1, form a basis for 77. This gives rise to another infinite ascending
chain of vector spaces #° c¥' cy?c ...cyi ' cyic ..., and for any j we
have

yi=gileyil=yi2teoyi2eyi-l=..
=77 07 e.. 07/ oyl
Working with strings of length 256 (such as when approximating plots of functions
sampled uniformly at 2® points) is thus equivalent to working in the larger space 7
and using the identity:

7vi=7'ewev'e. eview’.
There are two-dimensional analogs of these ideas, based on products of dilated and
translated versions of univariate scaling functions and mother wavelets, which provide

a theoretical framework for the digital image representation and compression ideas
from the last section. Details can be found in [15, 16,17, 8,7, 11].

5. Averaging and Differencing with Matrices

Here we give a natural matrix formulation of the averaging and differencing
technique explained in Scheming. We provide enough details to allow the curious
reader to use a standard computer algebra package, such as Matlab, to reproduce
the pictures in this article. The Matlab M-files we used are available from
http: //www.spelman.edu/~colm. Matrix multiplication is not necessarily the
most efficient approach here; for large data sets there are better ways to effect the
transformations.
Let A, A,, and Aj;, respectively, denote the following matrices:

10 0 o0 3 0 0 0] (5 O 3 0 0 0 0 0
10 0 0 -1 0 0 0| [3 0 —3 00 0 0 0
0 £ 0 0 0 3 0 0| [0 3 0 $ 0 0 0 O
0 1 0 o0 0 -3 0 0| {0 3 0 -3 0 0 0 0
0 0 35 O 0 0 3 o]0 o0 0 01 0 0 O
0 0 3 O 0 0 -3 o o o 0 0 0 1 0 O
0 0 0 3 0 0 0 51 |0 o 0 00 0 1 0
0 0 0 3 0 0 0 -3 0 0 0 0 0 0 0 1



http://www.jstor.org/page/info/about/policies/terms.jsp

VOL. 69, NO. 5, DECEMBER 1996 339

SO OO O O
S OHODOO O O
SHOODOO O O
—_H OO OO Oo O O

SO O OO O W=
OO OO OO W
SO OO = O O
SO OoOHO O O

The three-stage transformation from (64 48 16 32 56 56 48 24) to (43 —3 16
10 8 —8 0 12) can be thought of in terms of these matrix equations:

(56 24 56 36 8 —8 0 12)
(40 46 16 10 8 —8 0 12)
(43 -3 16 10 8 —8 0 12)

(64 48 16 32 56 56 48 24)A,,
(56 24 56 36 8 —8 0 12)A,,
(40 46 16 10 8 —8 0 12)A,,

or, equivalently, this single equation:
(43 —3 16 10 8 —8 0 12) =(64 48 16 32 56 56 48 24) A A, A,.

So it all boils down to linear algebra! Since the columns of the A;’s are evidently
orthogonal to each other with respect to the standard dot product, each of these
matrices is invertible. The inverses are even easy to write down—after all they simply
reverse the three averaging and differencing steps. In any case, we can recover the
original string from the transformed version by the operation:

(64 48 16 32 56 56 48 24) =(43 -3 16 10 8 —8 0 12) A;'A;'A[!.

It is a routine matter to construct the corresponding 27 X 2" matrices A}, A,,..., A,
needed to work with strings of length 2", and to write down the corresponding
equations. For simplicity we write W in place of the product A, A, ... A, from now
on. As mentioned earlier, there is no loss of generality in assuming that each string’s
length is a power of 2.

For two-dimensional image matrices, we do the same row transformations to each
row, followed by corresponding column transformations. The beauty of the string
transformation approach is that the equations relating the “before” and “after” strings
are valid applied to an image matrix and its row-transformed form. If P is a 2" X 2"
image matrix then the equations Q = PW and P = QW' express the relationships
between P and its row-transformed image Q. To handle column transformations, we
repeat the steps above with a few transposes (denoted by ') thrown in. Putting
everything together gives the following equations, which express the relationship
between the original P and the row-and-column-transformed image T:

T=((PW)W)' =W'PW and P=((T)W')yW'=(W')yTW '

One smart shortcut we can take is to replace all of the +1/2’s in the matrices A;
with +1/v2’s: this is equivalent to the non-intuitive “averaging” mentioned at the
end of the last section. The columns of each matrix A, then form an orthonormal set.
Consequently the same is true of the matrix W, which speeds up the reconstruction
process, since the matrix inverses are simply transposes. There is more than mere
speed at stake here: as we already saw in Ficure 10, this normalization also leads to
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compressed images that are more acceptable to the human eye. (In the language and
notation introduced in Wavelets, this is equivalent to normalizing the Haar scaling
and wavelets functions, so that we use

¢j(x) =2/2¢p(2/x —i) and x/(x)=2/"7x(2/x—1),

(for 0 <i <2/ —1) as bases for 7/ and 77, respectively.)

In matrix terms, the image compression scheme works like this: Start with P, and
compute T =W'PW, which (we hope) will be somewhat sparse. Choose a threshold
value ¢, and replace by zero any entries of T whose absolute value is less than or
equal to &. Denote the resulting doctored matrix by D; this is sparse by design, and
thus easier to store and transmit than P. To reconstruct an image from D, compute
R=WYDwL

Lossless compression is the case where D=T (e.g., if £=0) so that R=P.
Otherwise we have lossy compression, in which case the goal is to pick & carefully, so
as to balance the conflicting requirements of storage (the more zeros in D, the better)
and visual acceptability of the reconstruction R.

6. Wavelets on the World Wide Web

In the case of real-time image retrieval, such as grabbing images on the World Wide
Web, the compression technique we have discussed allows for a type of progressive
image transmission: When an image P is requested electronically, a wavelet-encoded
version T is brought out of storage, and bits of information about it are sent “over the
wires,” starting with the overall average and the larger wavelet coefficients, and
working down to the smallest wavelet coefficients.

As this information is received by the user, it is used to display a reconstruction of
P, starting with a very crude approximation of the image that, rapidly updated and
refined, looks noticeably better as more wavelet coefficients are used. For instance,
the images in Ficures 9 and 10 could form stages in a progressive transmission.
Eventually (assuming the user has deemed this picture worth waiting for) all of the
wavelet coefficients will have been transmitted and a perfect copy of P displayed. If
the user loses interest or patience along the way, she can easily halt the process and
move on to some more pressing task, such as learning Fourier analysis.

7. Wavelet Details

In attempting to make this introduction to wavelets as easy and painless as possible,
we may have suggested that the subject is neither deep nor profound: nothing could
be further from the truth. Here we try to put the Haar wavelets, which were used in
image processing as far back as the 1970s [14], in context, and hint at the recent
generalizations which have generated so much interest in the mathematical commu-
nity and elsewhere.

A wide variety of wavelets is available to decompose, analyze, and synthesize both
discrete and continuous data. In general, a wavelet is any function whose dilations and
translations form a Riesz basis for the function space #*(R) (the set of square
integrable functions on the real line). For simplicity, we ignore normalization consid-
erations. We also assume that all functions are real-valued.

Most wavelets are derived from a corresponding scaling function, namely a function
¢ satisfying a scaling equation ¢(x) =¥, z¢;¢(2x —i). Given such a function, we
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define 7% to be the closure of the linear span of the set of integer translates
¢2(x) = ¢p(x — i), i €Z, of ¢(x), and then for each j € Z take 77/ to be the closure
of the linear span of the set of dilated and translated functions ¢/(x):=
¢QIx — i), i € Z. A multiresolution analysis (MRA) is said to exist when the induced
doubly infinite collection of vector spaces ... C¥ 2 c¥7 'cy'cylcyic...
satisfies three criteria:

1. flx)e77 ifand onlyif f(2/x) €7, VjeZ
2. Ny 77 =1{0}
3. U, 7 =R

Once a MRA is in place, it is an easy matter to define the corresponding mother

wavelet: '
x(x) = X (=)o, d(2x—1),
iez
where ¢(x) = L, ;¢,$(2x —i). This wavelet turns out to have zero integral over the
whole real line.

One way to generalize the Haar scaling function (which is a first order B-spline) and
wavelet is as follows: for any k € N, the kth order B-spline (which can be thought of
as the convolution of the Haar scaling function with itself k — 1 times) satisfies the
scaling equation ¢(x) = Xk_j27k*! (Ii‘)c[)@x —i). This yields an MRA, and hence a
wavelet in the manner just described [6, Chapter 5], [18]. These spline wavelets are
compactly supported and have k — 2 continuous derivatives, but only in the Haar case
do we get orthogonality between members of the induced family of translated and
dilated functions.

While one does not always insist on orthogonality for such basis functions, it is
generally considered desirable for wavelets to have compact support, or at least rapid
decay, in sharp contrast to the behavior of the sines and cosines which play a central
role in Fourier analysis. This renders wavelets ideal for representing non-periodic
functions, especially those with spikes or discontinuities. For one thing, fewer basis
elements and coefficients are needed to represent such a function when compared
with the classical Fourier series expansion.

There are three things to try to juggle here: smoothness, support, and orthogonality.
Sadly, we can’t have everything: there are no infinitely differentiable orthonormal
wavelets which have exponential decay (never mind compact support) [6, Chapter 5];
so some sort of compromise is in order.

The spline wavelet construction above can be modified to yield the so-called
Battle- Lemarie wavelets, which have exponential decay, are k — 2 times continuously
differentiable and orthonormal. In 1988, Daubechies made a breakthrough with the
construction of compactly supported, orthonormal wavelets with any desired finite
degree of smoothness. Her simplest non-trivial example is continuous, and is derived
from a continuous scaling function ¢, which satisfies

”‘/_ $(2x )+3+‘/_ $(2x 1)

3 ‘/_d>(2x—2)+ ‘/_

o(x) =

b(2x —3).

There are no closed form expressions for these functions: they are studied by means of
a careful analysis that starts with taking the Fourier transform of the scaling equation
[6, Chapter 6]. (For fixed x, we can solve for ¢(x) as the limit of the sequence <I)_,.(x)
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defined recursively via: ®(x) =X, z¢,®;_,(2x — i), where @, is the Haar scaling
function.) Despite our ingrained instincts, which suggest that we try to “solve” any
equation set in front of us, in general there is no need to get our hands on the scaling
functions or wavelets themselves; in many ways they are best explored using the
numbers ¢; alone.

These more sophisticated, continuous wavelets produce smoother, more satisfactory
compressed images than the ones that we obtained [15, 16, 17]. Here lies the real
potential for progressive image transmission, and perhaps adaptive plotting, too.

For full mathematical treatments, the reader could start with [6], [5], or [13]. Books
covering applications as well as theory include [3] and [1]. A gentler survey of the field
can be found in [10].

8. Closing Remarks

A major advantage of wavelet over Fourier methods, which we have not touched on at
all, is that with wavelets it is possible simultaneously to localize in space (or time) and
frequency. Wavelets capture detail at different scales at the same time: the plots of the
damped sine curve in Ficure 8 and the compressed images of Emmy Noether
illustrate how the wavelet details take advantage of the changing nature of the data
variation over different regions. See [6], [5], or [13] for further details.

Glassner’s Principles of Digital Image Synthesis is an excellent resource, full of
helpful pictures, for wavelet basics as they relate to graphics, that also discusses some
of the connections with Fourier methods [8, Chapter 6]. Strang and Nguyen [20] treat
wavelets from a signal processing perspective.

For an account of a recent adoption of wavelets as a standard for image compres-
sion, see [4] or [20]. Another common use of wavelets is to the denoising of digital
data. There, unlike in the compression we considered, one discards detail coefficients
larger than a certain threshold (see [7], [20]). There are also wavelet applications to
video compression [20]; to medicine (tomography, MRI images, mammography,
radiography, and neural networks) [1]; to audio and speech signals [21], [20]; and to
partial differential operators and equations [3], [20].

An excellent World Wide Web resource for wavelets is The Wavelet Digest at the
University of South Carolina, http://www.math.sc.edu/~wavelet/.
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Good-bye Descartes?
KEITH DEVLIN

Saint Mary’s College of California
Moraga, CA 94575

Happy birthday, Descartes

This year is the 400th anniversary of the birth of René Descartes. To future historians,
this might well be seen as the period when the Cartesian domination of science came
to an end. Having long underpinned Mankind’s attempts to comprehend the physical
world, mathematics has hitherto failed to achieve comparable success in our attempts
to understand the human world of people and minds. The lofty goals of artificial
intelligence, cognitive science, and mathematical linguistics that were prevalent in the
1950s and 1960s (and even as late as the 1970s) have now given way to a realization
that the ‘soft’ world of people and societies is almost certainly not amenable to a
precise, predictive, mathematical analysis to anything like the same degree as is the
‘hard” world of the physical universe.

In the days when physics and chemistry were the fundamental sciences that
underpinned society, mathematics occupied a premier position. It was sometimes
referred to as the ‘Queen of the Sciences.” But today, in the Age of Information,
psychology, sociology, and communication science—the human sciences—occupy at
least an equal position in the pecking order, and the mathematical sciences—and
mathematics itself—each has to adjust to being just one of a number of ways of
understanding how minds work, how people communicate, and how societies func-
tion. These days, mathematics frequently finds itself blended in with other disciplines,
giving rise to a fascinating new way of using mathematics—what in a forthcoming
book [3] I refer to as ‘soft mathematics.’

And with this change, we are moving away from the Cartesian view of the world
that has been characteristic of scientific investigation for the past three hundred years.

The rise of Cartesian science

To begin at the beginning, what is nowadays often referred to as “Cartesian science’
(or just plain ‘science’) has its most identifiable beginning with the ancient Greek
philosopher and mathematician Thales around 600 B.c., with the Pythagoreans a
hundred years later, and with Plato and Aristotle around 350 B.c. To Plato and others
we owe the notion that mathematics provides the key to understanding the physical
world. The success of mathematics in astronomy and later the study of the physical
word in general was dramatic. As a result, it is hardly surprising that mathematics
came to occupy a pivotal role in what is generally known today as the ‘scientific
method.’

The modern scientific method, based on observation, mathematical measurement
and description, and logical analysis, owes much to the three individuals Galileo
Galilei, Francis Bacon, and Descartes. In the words of Galileo, “The great book of
nature can be read only by those who know the language in which it is written, and
this language is mathematics.” In a similar vein, Descartes wrote that he “neither
allows for nor hopes for principles in physics other than those that lie hidden in
geometry or in abstract mathematics, for in this way all phenomena of nature will
yield to explanation, and a deduction of them can be given.”
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| think, therefore | am

For Galileo, the role of the scientist was focused on measurement and the discovery of
descriptive, quantitative formulas, rather than the formulation of casual explanations
obtained by philosophical reflection, which had been typical of earlier work in
‘science.” In many ways, Galileo and Bacon were each early forerunners of the
‘no-nonsense, down-to-earth, practical scientist’ of the twentieth century.

Descartes was in many ways an early forerunner of today’s ‘applied philosopher.” A
delicate individual throughout his life, he was born to a noble family on March 31,
1596, at La Haye, near Tours in France. He received his early education at Jesuit
College in La Fleche, leaving school in 1612. Early success at the Paris gambling
tables might have indicated the keen mathematical mind that was later to emerge, but
it was to soldiering that he turned first, enlisting in the cause of Prince Maurice of
Orange at Breda in Holland in 1916.

On November 10, 1619, he reported having three vivid dreams that persuaded him
to turn from being a soldier to the more peaceful life of a philosopher. The legacy he
left to Mankind as a result of that career switch was swiftly established. For it was
during the ensuing two years that he both created analytic geometry and proposed the
idea that scientific truth be established not by dialectic reasoning but by rational
deduction based on experiment and observational evidence.

Between 1619 and 1621, Descartes moved between Paris and Rome, and it was
during this period that he met Cardinal Richelieu, later to become his patron. He
lived in Holland from 1628 to 1648, and it was there that he wrote his work Le
Monde. In 1634, when Le Monde was completed, Galileo’s enforced public rejection
of the Copernican system persuaded Descartes to abandon publication, and he made
arrangements to have it published after his death. However, in June of 1637, with the
approval of Cardinal Richelieu, he started to publish major parts of his work as the
series Essais Philosophiques.

After serving as tutor to Princess Elizabeth of Holland for several years, Descartes
spent the last year of his life in Sweden, at the invitation of Queen Christine, who had
heard of his reputation and desired to be instructed by him. He died on February 11,
1650, the victim of a combination of his delicate health and the cold Swedish winter.

Though he believed that all science could be reduced to mathematics, Descartes
made use of very little mathematics in his own work, and his only substantial
contribution to mathematics was his famous La Géometrie, in which he created
analytic (or ‘Cartesian’) geometry. This work was included as an appendix to the
volume Discourse on the method of properly guiding the reason in the search of truth
in the sciences, the first of the Essais Philosophiques. Though the publication of this
volume helped establish the modern scientific approach to knowledge, Descartes’ own
ultimate interest was elsewhere, namely the nature of human thought and what it is to
know something—an interest reflected in his oft-repeated remark “I think, therefore
I am.”

The science of mind

Descartes believed that his method, the method of science and mathematics, could be
applied to the inner world of the mind as well as to the outer world of the physical
universe. He wrote, “The long concatenations of simple and easy reasoning which
geometricians use in achieving their most difficult demonstrations gave me occasion to
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imagine that all matters which may enter the human mind were interrelated in the
same fashion.”

In large part because of the enormous influence Descartes had on the development
of modern science—Newton, in particular, was influenced by him—Descartes’ views
have led to numerous attempts to develop ‘mathematical sciences” of language and
reasoning modeled on physics, attempts that continue to this day. The belief is that,
once we have identified the right features—the equivalents of the length, mass,
velocity, acceleration, force, momentum, inertia, and so forth of physics—we can
develop a mathematical theory of language and/or reasoning that is every bit as
rigorous and precise as physics. In such a science of mind, as much as in physics,
mathematics will be both “maidservant and queen.”

It is within the Cartesian tradition that modern logic tries to capture in mathematics
the patterns of reasoning, and to some extent the patterns of language required to
formulate a logical argument. Key to such an approach is the assumption that the
thinking mind can be studied in isolation, free from context. However, it was only
after Descartes that this approach became the dominant one. Prior to the seventeenth
century, logic was regarded largely as an aspect of rhetoric—a study of how one
person’s argument could convince another. That was certainly the way Aristotle
regarded logic. Plato disagreed, condemning the use of rhetoric as “making the worse
arguments appear the better,” but it was Aristotle’s view that predominated. And it
continued to do so until Descartes advocated Plato’s context-free, ‘isolationist’ ap-
proach in the seventeenth century. For Descartes, the only knowledge worth pursuing
was that which could be expressed by eternal, context-free, precise rules that captured
general patterns.

Underlying the Cartesian approach to the study of reasoning is Descartes’ view that
the mind and the brain-body are separate entities. For Descartes, the mind was an
abstract entity that resides in the physical brain, and mathematics can be used to
explain the workings of that abstract mind. ‘Dualism’ is the name given to this
fundamental separation of mind from body. For the student of language and reasoning
who works in the dualist tradition, there are two distinct domains, the subjective,
internal world of the mind, and the external world, an objective reality made up of
things that bear properties and stand in relations to one another. It is assumed that
there are objective facts about the external world that do not depend on the
interpretation—or even the existence—of any person. We make our way in the world
by acquiring information about those things and constructing an internal representa-
tion or ‘mental model’ of the external world. Thinking is a process of manipulating
those internal representations. Cognition is based on the manipulations of the internal
representations. Language is a system of symbols that are composed into patterns that
stand for things in the world.

One of the major puzzles that arise from the dualist view of the world is the
so-called ‘mind-body problem’: how can our abstract, internal thoughts and intentions
about action cause the physical motion of our bodies?

So deeply rooted has Descartes’ dualist view become in present-day science—and
indeed in much of our present-day world view—that until very recently, not only was
it widely believed that it was only a matter of time before familiar-looking, mathemati-
cal sciences of reasoning, language, and communication are developed, but any theory
—of cognition, language, society, or whatever—that does not fit the expectations of
Cartesian science runs the risk of being dismissed, at least by scientists, as ‘not
completely respectable.’

However, despite its extensive and pervasive acceptance, in recent times a number
of philosophers have seriously challenged Cartesian dualism—Husser]l, Heidegger,
Ricoeur, Gadamer, Merleau-Ponty, Sartre, Mead, Dewey, Habermas, Wittgenstein,
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Dreyfus, and others. So too have a number of biologists and neuroscientists, among
them Maturana, Varela, and Damasio. Within the last decade or so, some leading
figures in the computer world have also begun to question the Cartesian view on
which much of computer science is based: Winograd and Flores with their 1987 book
Understanding Computers and Cognition [11], Lucy Suchman with her book Plans
and Situated Action [8], which also appeared in 1987, and others.

One of the first people to try to move away from the dualist position was the
German philosopher Martin Heidegger. In his book Being and Time [5], published in
1927, Heidegger investigated the subject known as ‘phenomenology,” introduced
earlier by Husserl, which seeks to understand the foundations of everyday experience
and action. Phenomenology challenges some of our basic assumptions about ourselves
and the world. According to Heidegger, it is wrong to adopt a simple objective stance,
where the primary reality is an objective physical world, and it is likewise wrong to
take a simple subjective stance, where your thoughts and feelings are the primary
reality. Rather, neither can exist without the other, and you have to consider both
together, as a single whole. In your normal, everyday life, says Heidegger, you do not
adopt a detached, ‘rational’ view of what you do; you simply act. If you think about
your actions in a detached, rational way at all, you do so ‘after the event,” perhaps
because something “went wrong’ and you decide to reflect on what you did. Since this
is the way we actually experience the world, moment-to-moment, Heidegger insists,
the detached Cartesian view is misleading and, far from leading to a deep understand-
ing of our existence and our actions, will in fact prevent us from achieving an
adequate understanding.

For instance, we approach every situation from a prior context that inescapably
shapes and prejudices the way we encounter and react to that situation. Because this
is how things always are, because we are never in the position of a completely
detached observer with no prior experiences—we are never a clean slate if you
like—we should not regard prejudice as a condition that leads us to interpret the
world falsely. Our prior experiences are a necessary condition for us to interpret the
world at all. Interpretation is always relative to prior experiences. Trying to strip away
all context is an investigative strategy that can lead to a way of understanding ourselves
and the world that may, on occasion, be useful. However, we should not confuse this
investigative strategy with the way things ‘really are.’

Coming from a very different intellectual background, the biologist Humberto
Maturana argues that the dualist view of cognition obscures its complex biological
nature, and in so doing creates a misleading view of thought and communication. In
their 1980 book Autopoiesis and Cognition [6], Maturana and his student Francesco
Varela describe living systems (such as organisms) in terms of ‘autopoiesis,” a technical
notion introduced by Maturana to describe the way the different parts of a living
system interact to produce what we call life. Rather than view the system as ‘acquiring
information” by forming an internal representation, they argue, we should concentrate
on the ongoing changes to the system brought about by constant interaction with the
environment. Communication between two such systems should not be regarded as a
‘transmission of information’ but a form of coupling between them.

For Maturana, it is misleading to think of a single, isolated ‘state’ of an autopoietic
system. You have to consider both its environment and its history. In particular, the
mind cannot be understood in isolation from the body, a point discussed further in the
book The Embodied Mind [10], written by Varela, Thompson, and Rosch, and
published in 1991.

The year 1991 also saw the appearance of the book Consciousness Explained [2], by
the philosopher Daniel Dennett, in which he argues against the view of consciousness
as a so-called ‘Cartesian theater’ in which an ‘inner self” observes external events
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played out before us in the mind like the action on a stage. Dennett presented
arguments to show that the phenomenon of consciousness can only be understood by
looking at the way the components of a complex system interact with each other over
a period of time.

Another recent ‘attack’ on Cartesian dualism comes from the neurologist Antonio
Damasio. In his 1994 book Descartes’ Error [1], he argues that the emotions play a
crucial role in human reasoning. While he acknowledges that allowing the emotions to
interfere with our reasoning can lead to irrational behavior, Damasio presents evi-
dence to show that a complete absence of emotion can likewise lead to irrational
behavior. Damasio’s evidence comes from case studies of patients for whom brain
damage—either by physical accident, stroke, or disease—has impaired their emotions
but has left intact their ability to perform ‘logical reasoning,” as may readily be verified
by using standard tests of logical reasoning skill. Take away the emotions and the
result is a person who, while able to conduct an intelligent conversation and score
highly on standard IQ tests, is not at all rational in his or her behavior. Such people
will often act in ways highly detrimental to their own well being. Damasio’s evidence
shows that, when taken to its extreme, the Cartesian idea of a ‘coolly rational person’
who reasons in a manner unaffected by emotions is an oxymoron. Truly emotionless
thought leads to behavior that by anyone else’s standards is quite clearly ‘irrational.’

And there is more of the same from other sources. It is all relatively new, and
almost all controversial. Science never provides ‘right’ answers. At most a scientific
theory might gain universal or almost universal acceptance among the scientific
community as ‘the best explanation available at the time.” With science in the making,
controversy is far more common than agreement. In the case of investigations into
human rationality, so deeply is the dualist view ingrained in the psyche of twentieth
century Western Man that any theory that challenges that view will have a hard time
of it. But for all that we may rail against it in much the same way that our ancestors
could not accept that the earth was not flat, the evidence continues to mount that the
answers to the age old questions concerning the nature of thought, communication,
and action will not be found until we go beyond the boundaries imposed by the legacy
of Descartes.

Time to leave the Omega

The contemporary philosopher Stephen Toulmin, in his book Cosmopolis [9], likens
the course of post-seventeenth century human thought to the Greek letter Omega, ().
He writes:

The formal doctrines that underpinned human thought and practice from
1700 on followed a trajectory with the shape of an Omega, i.e. “Q0.” After
300 years we are back close to our starting point. Natural scientists no
longer separate the “observer” from the “world observed,” as they did in
the heyday of classical physics. ...Descartes’ foundational ambitions are
discredited, taking philosophy back to [that of an earlier era]. (Page 167,
emphasis in the original.)

The Cartesian approach—with its pinnacle role for mathematics—was extremely
successful. It led to all of today’s science and technology. These days, natural science
is often referred to as ‘Cartesian science.” Its success motivated attempts to adopt the
same approach to the study of mind and language. For instance, the linguist Noam
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Chomsky used the term ‘Cartesian linguistics’ to refer to the mathematically-based
analysis of language he developed in the 1950s. And Descartes’ philosophy lay behind
three decades of immense efforts to develop artificial intelligence. But the very
success of Cartesian science has led us around the loop of the Omega. Our inability to
develop mathematically-based, Cartesian theories of mind and language and to endow
machines with ‘intelligence’ (see Dreyfus [4]) has forced us to abandon the Cartesian
approach and go back to the view advocated by Aristotle. If we want to understand
reasoning and communication, we cannot consider them in isolation. We have to
consider the context—the context where a person reasons and the context where two
people communicate. And that means that mathematics cannot go it alone. At the very
least, we have to consider the mental and social contexts, which means that the
methods of sociology and psychology will be required. And maybe we have to consider
the physical context as well, the fact that the brain is a physical organ in our bodies,
requiring the contribution of the neuroscientists. In any event, it is time to leave the
Omega. We need to say goodbye to Descartes.

This is hardly a new cry. The same suggestion was made by the mathematician
Blaise Pascal while the ink on Descartes’ page was barely dry. The following words,
taken from Pascal’s book Pensées, published in 1670, provide an excellent way to close
and bid a fond farewell to Descartes. Perhaps.

The difference between the mathematical mind and the perceptive mind:
the reason that mathematicians are not perceptive is that they do not see
what is before them, and that, accustomed to the exact and plain principles
of mathematics, and not reasoning till they have well inspected and
arranged their principles, they are lost in matters of perception where the
principles do not allow for such arrangement. ...These principles are so
fine and so numerous that a very delicate and very clear sense is needed to
perceive them, and to judge rightly and justly when they are perceived,
without for the most part being able to demonstrate them in order as in
mathematics; because the principles are not known to us in the same way,
and because it would be an endless matter to undertake it. We must see
the matter at once, at one glance, and not by a process of reasoning, at
least to a certain degree. ...Mathematicians wish to treat matters of
perception mathematically, and make themselves ridiculous . .. the
mind. .. does it tacitly, naturally, and without technical rules.
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The fact that an indefinite integral is a set of functions is often ignored, perhaps
because of the apparent simplicity of the situation. However, if we regard

iif or fcosxdx

X sin x

as functions, we can easily develop fallacious proofs of such “identities” as 0 = 1.

In this note we introduce a semigroup operation on the set of all nonempty subsets
of a vector space. Then we indicate how the indefinite integral can be viewed as a
set-valued function (or multifunction) and how this point of view avoids the fallacies
mentioned above. Finally, we show how the multifunction given by the indefinite
integral induces a linear function on the space of continuous functions.

Algebraic set operations Let X be a vector space over the real numbers, and let
P(X) denote the family of all nonempty subsets of X. We define addition and scalar
multiplication on the family P(X) by

A+B={a+b:acA, beB}
and
aA={aa: a €A},

where A, B€ P(X) and a € R. In particular, A — B =A + (—1)B. These are called
algebraic set operations. Notice that (P(X), +) is not a group if X # {0}. Indeed, {0}
is the neutral element in (P(X), +), and for every A € P(X)

A+X=X,
so X has no inverse element. The operation + is associative and commutative. The
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following properties of the operations hold

a(BA) =(aB)A (1
a(A+B)=aA+aB (2)
1A=A. (3)
The inclusion
(a+B)ACaA+BA (4)

holds, but the opposite inclusion need not hold. (Setting X =R, A={-1,1}, and
a=p =3 gives a counterexample.) Other properties of algebraic set operations
include the following, where A, B,C € P(X) and a € R:

0eEA-A (5)

(0eAand A+BcC)=BcC (6)
a#0= (ACB s aAcCaB) (7)
A+BcC=BcC-A (8)
A=B=A+C=B+C. (9)

The converse to (8) does not hold, as shown by the example A =B =X and
C={0}. For X=R, A=[0,1], B={1}, and C=[1,2] we have A+ B=C and
B # C — A. Thus, in general, A + B = C does not imply B=C — A.

Some formulae, that do not hold in the general case, do hold for convex sets. A set
A € P(X) is convex if for every o, BE€ R such that « >0, B>0, and a+ B =1,

aA+ BACA.

The converse implication to (9) need not hold in general (e.g., A# X and C =X).
However, if X is a normed vector space, B is closed and convex, and C is bounded,
then (see, e.g., [2, Lemma 1])

A+CCcB+C=ACB.

Let A be a convex set, @ >0 and B> 0; then

a B
Py Ry

ACA.

From (7) and (2) we get A + BA C(a+ B)A, and by (4),
aA+BA=(a+B)A.
In particular, if A is convex then

A+A=2A.
A subset C of X is a subspace if for all a, B€R

aC+ BCcC.

Now, for fixed x € X, the subset {x} + C is called an affine subspace (flat) parallel to
C. A flat is a convex set. If C is a subspace of X and L is a flat parallel to C, the
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following algebraic properties are easily proved:
cC+C=C
L-L=C
a*0=>aC=C
cC-C=0
AcC=A+C=C
AcC=A+L=L.

For more on algebraic operations with convex sets, see [3].

(10)
(11)
(12)
(13)
(14)
(15)

Indefinite integrals Let ICR be an interval, C(I) the vector space of all
continuous real functions on I, C'(I) the subspace of all continuously differentiable
functions, and C the subspace of all constant functions. A differentiable function ¢ is
a primitive function of f if ¢’ =f holds. The set of all primitive functions of f is

called the indefinite integral of f, and denoted by

[f=1{¢: &' =f}.
Let f, g€ C(I) and & € R; then
Jf*¢
c=ff- s
[f+e=[f+]¢g
0-[fc fof
o€ [f= [f=le}+C
a¢0=[@eaff
AcC= [f+a=f

fec1(1)=>[f'={f}+c

u,veCl(I)=>fuv’={uv}—fu’v.

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)
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We prove the properties (18) and (24); the others have similar proofs. For (18), let
o€ [f and Y€ [g; then [f+ [g=({¢}+C)+ {y}+ C). By the commutative and
associative laws and (10), we have

[+ [g={e+y}+C.

Since (¢ + ¢)' =f+ g, (20) shows that

Jr+[e=[(f+a).

To deduce (24), the formula for integration by parts, let ¢ € fuv’. Then ¢' =
(uv) —u'v. Since [(uv) —u'v={uv}— [u'v we have @€ {uv}— [u'v, so [u' C
{uv} — Ju'v. Conversely, if ¢ € {uv} — [u'v there exists a function ¢ € [u'v such that
e=uv—¢. Since ¢’ = (uv) —u'v=ul/, we have ¢ € [uv', so {uv} — [u'v C Juv'.

Note that, by (20), [f is a flat, so (11) implies (17).

Example 1. Let I=(0,7) and for x €I, f(x)=cosx/sinx. Let | = [f. Using
integration by parts, where u(x)=1/sinx and v(x)=sinx, we get J=1+].
Failure to notice that an indefinite integral is a set leads to the fallacious conclusion
that 0 = 1. However, from (24) we have | ={uv}+] where uv € C. Therefore, by
(22), J=].

A mistake can also be made in calculating integrals when incorrect set formulae are
used. For example, from the “equality”

J=u(x)o(x) =]

one might conclude that 2] = u(x)v(x), which is also incorrect.

Example 2. Let I=R, f(x) =e¢"sin x, and g(x) =e*(cos x — sin x). Using (24) we
get

[f=ta) - [f.
Clearly, {g} # 2 [f. However, [f ={g} — [f implies, by (9), that
[+ [r=ta +(fs- [1).
Therefore

2[f={g}+cC,
and, by (7) and (12),

ff={%}+c.

The antiderivative multifunction Let X and Y be Banach spaces. A multivalued
function (or simply a multifunction) F: X — P(Y) is called convex if its graph

grF={(x,y) EXXY: yeF(x)}
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is a convex set. This is equivalent to t. > condition that
aF(x,) + BF(x,) CF(ax, + Bxy)

forall x;,x,€X,and all «>0, B=>0 with o+ B=1.

We say that F is closed on X if grF is a closed set in the product topology on
X X Y. This is equivalent to the condition that x; = x, y, =y, x;, € X, and y; € F(x)
imply y € F(x).

Le Van Hot [1, Theorem 2] has proved that if X and Y are Banach spaces and F:
X—P(Y) is a convex closed multifunction such that dom(F)=X and F(x,) is
bounded for some x, € X, then there exists a unique linear single-valued function T
X =Y such that

F(x)=F(0) +T(x). (25)

Without the assumption that F(x,) is bounded for some x, € X, the conclusion of
Le Van Hot’s Theorem is not true. Consider, for example, the multifunction F:
X—-P(Y), given by F(f) = [f, where X=Y=C([0,1]). Note that C([0,1]) is a
Banach space with

Ifll = max{] f(x)|: x €[0,1]}.

By (18) and (21), F is a convex function. Also, F is closed by the uniform convergence
and differentiation theorem [4, Theorem 7.17]. By (16), we have

dom(F) = {feX: F(f) + ¢} = ¢([0,1]).

However, F(f) is unbounded for each fe& C([0,1]). In this case the formula (25)
becomes

[f=[o+{T(f) (26)

or, equivalently,

[r={T(H)+c.
If we let T: C([0, 1] — C([0, 1]) be the linear function given by
T(f)(x) =e(x) —¢(c)

where ¢ € [f and ¢ is any number in [0,1], then (26) holds. However, T is not
unique.
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Finite Groups of 2 X 2 Integer Matrices
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Introduction The story behind this article begins in a classroom, with a presenta-
tion intended to show that the dihedral group Dg of symmetries of the hexagon can be
realized as a group of invertible 2 X 2 matrices with real number entries. Two
matrices that can be used to generate this group are

{0 -1 (-1 -1}
B_(l 1) and F—( 0 l)’

R has multiplicative order six and F has order two. There is geometric motivation for
this choice of generators. As in Ficure 1, picture a regular hexagon centered at the
origin; highlight two of its adjacent radii (v, and v, in Ficure 1). Regard these radii as
vectors, to form a basis for R2. Relative to this basis, the matrix R (for “rotation”)
represents a counterclockwise rotation through 60°, while F (for “flip”) corresponds
to a reflection of the hexagon through the y-axis.

The set of matrices {F'R’|i =0,1; j=0,1,...,5} forms a group isomorphic to D;.
Familiar relations, such as FRF = R™", can either be checked by multiplying matrices

FIGURE 1
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or interpreted geometrically. An interesting and attractive feature of this representa-
tion of a non-abelian group of order 12 is that all of the matrices have integer entries.

Seeing this, a student wondered whether the alternating group A,, another
non-abelian group of order 12, could also be written using integer matrices of size
two. I suspected that the answer to this question was well-known, though, sadly, at
that moment not by me. Some instinct suggested to me that no such representation
was possible, but this was far from proof. To save face, I pointed out that a similar
question could be posed for D,, the group of symmetries of the square. Indeed,
elementary arguments show that D, can be represented using 2 X 2 integer matrices.
Can the quaternion group, the other non-abelian group of order 8, also be written this
way? Better yet, what are all the finite groups that can be realized using two by two
integer matrices?

Some exploration in the library soon revealed that the possibilities for groups
admitting such presentations can be narrowed quite quickly—provided one knows
some basic results in the theory of group representations and about degrees of
primitive roots of unity over the rationals [3]. There remained, then, the challenge of
answering the question using only elementary means—say, those available after one
semester each of linear and abstract algebra. What follows is an attempt to meet this
challenge; an interesting mix of group theory and linear algebra appear along the way.

For any finite group G admitting a matrix representation of the type at hand, the
subgroup G* of integer matrices of determinant 1 will play a fundamental role. The
finite group SL(2,3) of 2 X 2 matrices of determinant 1 with entries in Z, the field
with three elements, will prove equally important. In fact, we will show that any such
G™ must be isomorphic to a subgroup of SL(2,3). We will use elementary techniques
to find all of the subgroups of SL(2,3), a non-abelian group of order 24. In the
process, we will find all possible candidates for a G*. Once G* is known, the
structure of the full group G will be easy to determine.

Elements of finite order in GL(2,7Z) We denote by GL(2,7) the group of
invertible 2 X 2 integer matrices whose inverses also have integer entries. We seek to
classify the finite subgroups of GL(2,Z). If both a matrix A and its inverse have
integer entries, then, necessarily, det A = +1, since det A™* = 1/(det A). The subset
SL(2,Z) of matrices of determinant 1 is a normal subgroup of index two in GL(2,Z).

If a matrix A € GL(2,Z) has order n, then A" =1 (the identity matrix), so the
eigenvalues of A must be nth roots of unity. We claim that such an A must be
diagonalizable. If not, then A must have a repeated eigenvalue, say A. Let v be an
eigenvector of A with eigenvalue A, and choose any vector w so that {v,w} is a basis
for the complex vector space C?. Relative to this basis, the matrix of the linear

transformation determined by A is of the form (3 Z), for some complex numbers

and b, with a # 0. Because the characteristic polynomial of A is (x — A)*, we see that

b = A. Direct computation of powers shows that the matrix [ » ) which is similar to

0o )
A over C, has infinite order. But A has finite order, so we have a contradiction. (A
shorter but less elementary proof can by given by appealing to the Jordan canonical
form.)
One consequence of diagonalizability is that if A has order 2, and det A = 1, then
-1
0
order 2. Suppose that A has order greater than 2. Since 1 and —1 are the only

complex roots of unity which are also real and A% # I, at least one eigenvalue, A, of A
is not real. Moreover, since the characteristic polynomial of A has integer (and

A must be the matrix _?). In other words, SL(2,7) has a unique element of
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therefore real) coefficients, the eigenvalues of A must be complex conjugates A and
A, with AX = 1. But the product of the eigenvalues of a matrix is its determinant, so
det A = 1. Thus every element in GL(2,Z) of order greater than 2 has determinant 1.

Reduction mod 3: a mapping into SL(2,3) Our goal is to classify finite subgroups
G of GL(2,7). For any such G,G", the subset of elements of determinant 1 in G, is a
subgroup of G, with index either 1 or 2. Since G™ is a finite subset of SL(2,2), it is
tempting to reduce the elements of G* mod p, for various primes p. The groups
SL(2, p), for p prime, are finite counterparts of SL(2,Z); each consists of 2 X 2
matrices of determinant 1 over Z , the integers mod p. The natural projection from Z
to Z,, extends to a homomorphlsm from SL(2,7) into SL(2, p); it will prove useful to
examine the image of G* under such a mapping. Indeed, the case p = 3 provides a
wealth of information.
Suppose that the matrix A, A # I, is in the kernel of the mapping G*— SL(2, 3).
-1
0
3, A must have order greater than 2. Also tr( A), the trace of A, must be an integer

with tr A =2 (mod 3). But the eigenvalues of A are w and @, where o is a (non-real)
nth root of unity, so tr(A)|=|w + @| <|w|+|®w|= 2. The only possibility, therefore,

is tr(A) = —1, and it follows that A has the form A =|? _1b_
a, b, and ¢. Now, b =c¢ =0 (mod 3) since A is in the kernel of the mapping, and so
be must be divisible by 9. Because A is in G*, —a(l +a) —bc = 1. This relation,
taken mod 9, yields a?+a+1=0(mod 9); a direct check shows that no such integer

a exists. We have established the following result.

THEOREM 1. Let G be a finite subgroup of GL(2,Z) and let G*= G N SL(2, Z).
Then the mapping from G to SIA2,3) is an injective homomorphism.

Since ( _f), the unique matrix of order two, is not congruent to the identity mod

, for some integers

Thus G* is isomorphic to a subgroup of SL(2, 3), so the latter group merits a closer
look.

The order of SL(2,3) We will compute the order of SL(2, p) for any prime p, and
then specialize to p = 3. Clearly, SL(2, p) is a subgroup of GL(2, p), the full group of
invertible 2 X 2 matrices with entries in Z . For any prime p, the orders of GL(2, p)
and SL(2, p) are related by [SL(2, p)l=|GL(2, p)I/(p — 1). This can be seen by
applying the fundamental theorem of group homomorphisms to the mapping
¢: GL(2, p) » Z7, given by ¢(A) = det(A) mod p, where Z¥ is the multiplicative
group of non- 710 elements of Z, (Z} has order p — 1). The kernel of ¢ is SL(2, p).

The order of GL(2, p) can be found by a direct count. A matrix in this group can
have any of the (p* — 1) non-zero vectors in Z? as its first column; the second column
can be any vector other than one of the p multiples of the first column—a total of
p® — p choices. This shows that |GL(2, p)| = (p? — D(p? — p); therefore |SL(2, p)| =
p(p? = 1). In particular, SL(2, 3) has order 24.

SL(2,3) and its subgroups We now proceed to find the subgroups of this group.

LEMMA.

(1) SL(2,3) contains a unique element of order 2.
@ T= {( )Ia €Z } is a subgroup of order 3. Its normalizer, N(T), is a cyclic

group of order six.
(3) SL(2,3) contains a subgroup of order 8 isomorphic to the quaternion group.
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Proof. The argument used above to show that SL(2,7) has a unique element of
order two can be used here to establish (1).
In (2), T is clearly a subgroup of order 3. Direct computation shows that elements

of N(T) must be of the form (g Z), where a € Z, and b is either 1 or —1. The

matrix (_ (1) :i) has order six and generates N(T).

For (3), let A=(_(1) (1)) and B=(

1 -1

i 1). Direct calculation shows that A and

B have order 4, A2=B2=(_ (1) _?) (the unique element of order two), and

BAB '=A"% Thus A and B generate a quaternion group of order 8.

Let T be defined as in the Lemma. In any finite group, the number of conjugates
of a subgroup is the index in the group of the normalizer of the subgroup (for
example, see [4, p. 52]). Since N(T) has index 4 in SL(2, 3), the subgroup T has four
distinct conjugates T}, ..., T, in SL(2,3). The normalizers of these four conjugates of
T vyield four distinct cyclic subgroups of order 6: S,=N(T}), i=1,...,4. Each §,
contains the unique element of order two and a single subgroup of order three. Thus,
ifi#j,1S,nS]=2.

These four subgroups of order six thus account for 18 elements of SL(2,3): 8
elements of order 6, 8 elements of order 3, the single element of order 2, and the
identity. The quaternion subgroup from the Lemma above contributes 6 elements of
order four. We have now enumerated all 24 of the elements of SL(2,3). In particular,
SL(2,3) contains no elements of order 8 or 12. We can now describe the subgroup
structure of SL(2,3).

THEOREM 2. SL(2,3) contains

(1) no subgroup of order 12;

(2) a unique subgroup of order 8 (isomorphic to the quaternion group);
(3) no non-abelian subgroup of order 6;

(4) cyclic subgroups of orders 3, 4, and 6;

(5) no subgroup isomorphic to Klein’s four group';

(6) a unique subgroup of order 2.

Proof. Let a be the unique element of order two in SL(2, 3). Suppose there were a
subgroup H of order 12. Since H has even order, H must contain « [4, p. 17, Ex.
2.18]. Since H has index 2, it must contain the square of any element in SL(2,3). If
A is any element of order 3, then A is a square since A = A* =(A%?2 Thus, H must
contain all eight elements of order 3. Since @ commutes with elements of order 3,
multiplying them by & produces 8 more elements of order 6 in H. This places at least
seventeen elements in H—a contradiction.

To establish (2), recall that SL(2,3) contains only one element of order 2, no
element of order 8, and 6 elements of order 4. Thus, any subgroup of order 8 must
contain the six elements of order 4 that generate the quaternion subgroup of the
Lemma. Assertions (3), (5) and (6) follow from the fact that SL(2,3) contains only one
element of order 2. We have established (4) above.

Observe that our analysis of subgroup structure did not require use of the Sylow
theorems.

' Named after the mathematician Felix Klein, this is the non-cyclic group of order four and is isomorphic
to Zy X Z,.


http://www.jstor.org/page/info/about/policies/terms.jsp

360 MATHEMATICS MAGAZINE

The finite subgroups of GL(2,7) There are only two non-cyclic subgroups of
SL(2,3): the quaternion subgroup of order 8 and SL(2,3) itself. If G is a finite
subgroup of GL(2,Z), we have seen that G* is isomorphic to a subgroup of SL(2,3).
We now show that G* must be cyclic.

Suppose, instead, that G* is isomorphic to the quaternion group of order 8. To
derive a contradiction, we reduce G* mod 2, producing a homomorphism ¢:
G*— SL(2,2). Since SL(2,2) has order 6, the kernel of ¢ must contain an element,
A, of order 4. As we observed earlier, the eigenvalues of A are i and —i (two of the
complex fourth roots of unity). Thus, A has trace zero, and so must be of the form

(“ b) for some integers a and b. Now, b =¢ =0 (mod 2) since A is in the kernel

of the mapplng so b is divisible by 4. Since A has determinant 1, —a* —bc = 1. It
follows that a*= —1 (mod 4). This is impossible, since the square of every odd
integer is congruent to 1 (mod 4).

The same argument rules out the possibility that G* is isomorphic to SL(2,3),
since such a G* would have a subgroup isomorphic to the quaternion group of order
8. Theorem 8 says, therefore, that G* must be isomorphic to one of the groups

C,,Cy,C4,Cy4, 0r Cg,

where C,; denotes the cyclic group of order i.

The structure of G itself now follows readily. Our earlier discussion shows that,
among elements of finite order in GL(2,Z), only elements of order two have
determinant —1. If G*# G, then G* has index 2 in G. Let x be an element of G
that is not in G*. Then all the elements of the coset G*x must have order 2, since
they are matrices of determinant —1. In particular, if y is a generator of the cyclic
group G*, then yx must have order 2. Thus, (yx)(yx) = 1 and xyx ™' =y ~'; in other
words, conjugating by x inverts G*. This means that G must then be isomorphic to

one of the dihedral groups
Dy, D,, D3, D,, or Dj.

Since all the groups C; and D, above are subgroups of one of the dihedral groups
D, or Dg, and since (as noted at the outset) both D, and Dy can be written using
integer matrices, we can summarize our results as follows.

THEOREM 3. A finite group G can be represented as a group of invertible 2 X 2
integer matrices if and only if G is isomorphic to a subgroup of D, or Dy.

Conclusion A more economical presentation could be achieved by using the Sylow
theorems in analyzing SL(2,3), and by noting that the minimum polynomial of an
element of finite order n in GL(2,Z) must be divisible by the minimal polynomial
over the rationals of a primitive nth root of unity. A famous theorem due to Gauss
asserts that the degree of a primitive nth root of unity over the rationals is ¢(n),
where ¢ is Euler’s totient function. In our situation, ¢(n) =1 or 2; this forces n =1,
2,3, 4, or 6.

The results above are related to a geometric result called the crystallographic
restriction, which arises in classifying symmetry groups of crystals (see e.g.,
[1, p. 151]). This restriction says that the only rotations admitted by lattices in
dimensions 2 or 3 are those through angles 27/n, where n =1, 2, 3, 4, or 6. Indeed,
given a matrix A of the type under consideration, of order n > 3, we have seen that
the eigenvalues of A are precisely ¢'’ and ¢ %, with §=2mm/n and m and n

cos@  —sin 0) has exactly the same two

relatively prime. But the rotation matrix R = ( ;
sin @ cos
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distinct eigenvalues. Thus A and R are similar over the complex numbers, and hence
also over the real numbers ([2, p. 158]); i.e., CA = RC for some invertible real matrix
C. The columns of C can be viewed as the basis of a two dimensional lattice L. Since
A has integer entries, the relation RC = CA shows that rotating lattice vectors
through angle 6 produces vectors that are integer linear combinations of a basis of L.
So the lattice L admits a rotational symmetry and the crystallographic restriction can
be invoked to reveal the possible values of n.

Acknowledgment I would like to thank the referee and the editor for many helpful comments.
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Moving Card i to Position j with Perfect Shuffles
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To perform a perfect riffle shuffle, or faro shuffle, on a deck of 2n cards, you cut the
deck into two stacks of n cards and interlace them perfectly. This can be done in two
ways. If the shuffle leaves the top card on top, it is called an out shuffle. If the shuffle
moves the top card into the second position, it is called an in shuffle.

Perfect shuffles have been of great interest to a wide variety of people for a long
time. We have seen references to books on card cheating that described the perfect
shuffle back in the eighteenth century. Magicians use perfect shuffles in card tricks
(see Marlo [7] and [8]), and computer scientists use them in parallel processing (see
Stone [12] and Chen, et al. [3]).

For the mathematician, perfect shuffles provide a deep and complex structure from
a very simple and natural setting. Mathematics literature on the perfect shuffle ranges
from the recreational and nontechnical in Gardner [5], Ball and Coxeter [2], Adler [1],
Herstein and Kaplansky [6], and Rosenthal [11] to the very sophisticated work of
Diaconis, Graham, and Kantor [4] where the group generated by the in and out
shuffles is determined. Generalizations of the perfect shuffle provide more grist for
the mathematical mill in Morris and Hartwig [10], and Medvedoff and Morrison [9].

Moving cards to desired positions through perfect shuffles is of interest to magicians
and card cheaters because perfect shuffles appear to be random but are not. It has
long been known, and easily proved [4], that the top card can be moved to position j
(the top card is in position 0) through a sequence of in and out shuffles determined by
the base-two representation of j. Reading the base two digits from left to right, simply
perform a shuffle for each digit: an in shuffle for a 1 and an out shuffle for a 0. The
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reverse problem of bringing any card to the top is probably of greater interest to the
magician and is, in Martin Gardner’s words, “much harder to analyze.” Still quoting
from Gardner’s Mathematical Carnival: “Some attempts at efficient algorithms,
combining shuffles of different types, have been proposed, but the problem is far
from satisfactorily disposed of.”

We present a procedure for determining the shortest possible sequence of perfect
in and out shuffles that moves a card from position i to position j in a deck of 2n
cards. The procedure is easy and efficient (of order log n). Gardner’s problem is
solved as a special case by choosing the jth position to be the top of the deck (j = 0).

Label the 2n positions in the deck O through 2n —1 consecutively, with 0
representing the top position. It is easy to see that the out and in shuffles move a card
in position x to positions @(x) and I(x), respectively, where

o(r) = 2x mod2n if0<x<n
(x) = (2x+1)mod2n ifn<x<2n

and

I(x) = (2x+1)mod2n if0<x<n
2x mod2n ifn<x<9n.

Let D(x)=2x and E(x)=2x+ 1, without any modding. The effects of the
functions D and E on the base-two representation of x is clear. If the binary
expansion of x is x =x,x, ... x; (all such expansions will be binary in this paper) then
D(x) =x,x,... 5,0 and E(x) =xx,...x;1.

We construct a binary tree with root 0 that reflects all possible sequences of
compositions of D and E applied to 0. Moving down the tree, a step to the left
indicates the application of D, and a step to the right indicates E. Thus, as Ficure 1
shows, 0 is sent to 4 by applying E followed by two D’s.

0
/ \
1
2 N
N
0 1 /5 X
A A/ AVEUAN
0 1 2 3 // 5\ 6 7
/ \\
0 1 ... n-1 .. 2n-1 |
/\ ANARANANEA
0 1 2n-2 2n-12n 2n+1  4n=2 4n—1 4n  4n+l g g

FIGURE 1
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It is clear that the integers that appear on the row of the tree that is ¢ steps from
the root are the consecutive integers 0 through 2'—1 since the t-digit base-two
representations of these numbers generated by D and E are 00...0 through 11...1.
If j appears on the ¢-th level of this tree, then the path from the root labeled 0 to that
vertex labeled j is revealed by the ¢-digit base-two representation of j. If j =7, ;... j,,
then the sequence F,, F,, ..., F, moves 0 to j, where Fy =D if j, =0 and F, =E i
Jk=1

Similarly generated binary trees with different roots appear as subtrees of this one.
Ficure 1 illustrates how the tree with a root of 2 is such a subtree. On the subtree
rooted at i, the ¢-th level down from the root consists of the consecutive integers
D'(i) = 2% through E'(i) =2'(i + 1) — 1. If j appears on the ¢-th level down from
the root of this subtree, then the path from the root labeled i to that vertex labeled j
is revealed by the ¢-digit base-two representation of j — D*(i) =j — 2'i as above.

The introduction of modular arithmetic does not complicate matters much. Let
D,(x)=2xmod2n and E,(x)=(2x+ 1)mod2n. The analogous tree using these
functions is very similar to the previous one. Ficure 2 illustrates how the integers
along a row of this tree or one of its subtrees are consecutive from left to right, but
2n — 1 is followed by 0, 1, 2 etc. This follows immediately from the fact that the
mod2n function from Z to Z,, is a homomorphism.

D Em

A VAN
VASA A S AN

7

/0\ . e 7—1\ /n\ “ e 2n—1 \
0 1 « v« 29—22n-10 1 .. 24,222n-10 1
FIGURE 2

Let i,j € Z,,. We can find the shortest sequence of D,’s and E,’s that sends i to
j by simply constructing the subtree rooted at i until j first appears. The path from
the root i to j determines the sequence of D,’s and E,s.

Constructing such a tree could be time-consuming if 2n is large. It is of order n.
But it isn’t necessary to construct the whole subtree. First, construct the two
outermost paths of the subtree (D, (i), D2(i),..., D} (i) and E, (i), EZ(i),..., EL(i)

until j falls in the interval [ D} (i), E.(i)]. (In sz la,bl={a,a+1,..., b} 1f a<b,
and [¢,b]={a,a+1,...,2n = 1,0,1,..., b} if b <a.) The integer j first appears on


http://www.jstor.org/page/info/about/policies/terms.jsp

364 MATHEMATICS MAGAZINE

that level ¢ of the subtree since the integers that appear along each level are
consecutive. This is sure to happen in fewer than log,(2n) + 1 steps since, for any ¢
larger than log,(2n), the width of the ¢-th level of the subtree exceeds 2n. Scanning
the vertices on the ¢-th level of this subtree from left to right, j first appears
(j — D} (i))mod2n vertices to the right of the first vertex. Therefore, the ¢-digit
base-two representation of (j — D/ (i))mod2n indicates the sequence of D,’s and
E,’s needed to get from i to j. A 0 indicates D,, and a 1 indicates E,,.

Example. Find the shortest possible sequence of compositions of the functions D,,
and E,, that takes i =6 to j =47 in Z,.

Solution: We construct the outermost paths of the subtree rooted at 6.

D m D m m
D 12 24 48 44 (=96 mod52)
6
E:\ Em Em m
13 27 3 7

Our number 47 falls in the interval [44,7] in Z,, and we had to apply the functions

four times to get an interval that contains it. The difference (j — D;y(i)) mod 52 =

(47 — 44)mod52 =3 = 0011 as a four-digit base two numeral, so the sequence
D,,D,,E,, E, does the trick. Checking, we see

m? m?

D D E E

m m m m

6 12 24 49 47.

We are now a short step from solving our problem for card shuffling. Observe that

D,(x) if0<x<n

o(x) = E. (x) ifn<x<2n

and

E,(x) if0<x<n
D,(x) ifn<x<2n.

I(x) = {
So, D, (x) =@(x) in the top half of the deck and D
The reverse is true for E,,.
Working from the example above, the shortest sequence of in and out shuffles that
will move card 6 to position 47 in a deck of 52 cards is @, @, I, &, since
D,

m D"l EIIZ Em

6 = 12 2 24 I 49 > 47.

(x) =I(x) in the bottom half.

m

In the first three shuffles D, =& and E,, =1, since the cards of interest are in the
top half of the deck. But, in the last shuffle E,, translates to & since the card, 49, is in
the bottom half of the deck.

This proves and illustrates the following theorem.

THEOREM. Label the positions in a deck of 2n cards O through 2n — 1 consecu-
tively with 0 representing the top position. To determine the shortest possible sequence
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of perfect in and out shuffles that will move a card in position i to position §, proceed
as follows:

1.

Calculate the sequences D, (i), DX(i),..., D! (i) and E, (i), EX(i),..., E! (i) until
je[DLG), EL(D)].

2. Let s =(j — D.(i))mod 2n and write s as a t-digit base two numeral ss, ...s,.

m

3. Reading the digits s,s, ...s, from left to right, apply consecutively D,, to i if s, is

. Make the translation D,, = @ if D

0 and E,, if s is 1.

. is being applied to an integer in [0, n — 1] and
D,, =1 if applied to an integer in [n,2n — 1]. Similarly, E,, = 1if in [0,n — 1] and
E, =& in[n,2n — 1]. The resulting sequence of in and out shuffles (I's and &’s)
moves the card in position i to position j in a minimum number of perfect shuffles.

This procedure is general. It applies to a deck of any even number of cards, and it

can be used to move any card in such a deck to any other position. It is easy and
efficient to apply. It is of order log n. It can be used to move any card to the top of
the deck by simply letting j = 0 in the theorem above.
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Probabilities of Clumps in a Binary Sequence (and
How to Evaluate Them Without Knowing a Lot

DAVID M. BLOOM
Brooklyn College of CUNY
Brooklyn, NY 11210

1. Introduction When I was growing up in the 1940s and early °50s, my father,
though a non-mathematician, encouraged my already strong interest in mathematics
by bringing home books for me: problem and puzzle books, Hogben’s Mathematics
for the Million, Kasner and Newman’s Mathematics and the Imagination, and others.
In December 1985, when my son Eric and I visited him to celebrate his 80th
birthday, we found that Dad hadn’t changed his ways. He had picked up a copy of one
of Martin Gardner’s books (namely [1]), thinking that Eric and/or I might find in it
items of interest. (Martin Gardner needs no introduction to most readers. He wrote
regularly about mathematics for Scientific American magazine for many years and has
written many books—some of them published by the MAA—about mathematical
puzzles, curiosities, etc.)

What happened next was this: Eric (then 10) took a look at [1], found in it the
assertion (p. 124) that in an ordinary shuffled deck of 52 cards

“there will almost always be a clump of six or seven [consecutive] cards of (0)
the same color,”

took out a deck of cards and did the experiment, obtained no such “clump,” and came
to me for an explanation. Question: Did Eric witness an extremely unlikely occur-
rence, or was [1] wrong? That is,

In the case (m, k, t) = (26,26, 6), what is the probability that, in a random
string of m red and k black objects, some ¢ consecutive objects have the (1)
same color?

Essentially the same problem, in a different guise, came to my attention more
recently. In December 1992, I had to give a class test and a final exam in a required
course for non-majors. To make it harder for a student to copy, I wrote two versions
(“odd” and “even”) of each exam. At the class test, I gave out the two versions
alternately according to where the students had chosen to sit. Afterward, upon
marking “o” or “e” (16 odds, 15 evens) next to each name on my alphabetically
arranged roster, I was surprised to find that no three consecutive names had had the
same version of the test. Even more surprising, the same thing happened at the final
exam: Out of 15 “odds” and 17 “evens,” no three alphabetically consecutive names
had the same version. Question: Did I witness an extremely unlikely pair of occur-
rences, or was my surprise unwarranted? That is,

In the cases (m, k,¢) =(16,15,3) and (15,17,3), what is the probability
that, in a random string of m “odd” and k “even” objects, no ¢  (2)
consecutive objects have the same parity?

Clearly, (1) and (2) are different cases of the same problem. What follows is a
discussion of some elementary ways to solve it. In particular, we exhibit two (equiv-
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alent) recurrences for the probabilities, both of which can be proved by straightfor-
ward counting arguments. I found one of these recurrences purely by trial and error
(how I did so is described in §3). Subsequently, David M. Jackson of the University of
Waterloo showed me a simpler one, which we exhibit (with proof) in §5. In §2, a
non-recurrence method is discussed briefly.

2. A false start, and an answer to question (1) What is the probability of a
t-clump (some ¢ or more consecutive cards of the same color) in the shuffled deck?
When first trying to answer this question, I had a silly mental lapse. I reasoned as if
the colors of successive cards were independent (as of course they are not!); i.e., as if
the problem were to find the probability P,(n) that in n consecutive coin-tosses some
t-clump occurs. The latter problem is easier than (1). Indeed, there are just two
mutually exclusive ways that a t-clump can appear among n tosses: Either (i) a
t-clump occurs among the first n — 1 tosses, or (ii) the last ¢ tosses form a clump, its
type (heads or tails) is opposite to that of the (n —t)-th toss (unless n —¢ = 0), and no
t-clump occurs among the first n — ¢ tosses. Thus,

P(n)=P(n—1)+27"(1=P(n—1t))

when n >t (and we have P,(n) =0 when n <t, P(t)=2-27"). This recurrence for
P,(n) was easily incorporated into a computer program and produced the value
P,(52) = .5595..., which certainly would call into question Gardner’s “...almost
always....” So I told Eric, back then in 1985. Three or four years later, I realized that
I'd solved the wrong problem!

(Before addressing the right problem, note the intuitive likelihood that the correct
probability of a 6-clump in the shuffled deck is even smaller than the value of Ps(52)
obtained above. If the first coin-toss is heads, the second has a 50% chance of being
heads also; but if the first card is red, the probability that the next card is also red is
only 25/51.)

OK, what next? It occurred to me to try the well-known principle of inclusion-
exclusion, which states that if A,..., A, are events and P denotes probability, then

P(A,UA,U - UA,) =B, —B,+B;— - +(—1)""'B, (3)
where

By=YP(A); By,= Y P(A,NA); By= Y P(ANANA); et
i i<j i<j<k

If G is the probability that a 6-clump occurs in a randomly shuffled 52-card deck,
then G will equal the quantity (3) if we let n be a sufficiently large integer and then
define A; to be the event that some 6-clump begins with the i-th card in the deck;
i.e., that cards i,i +1,...,4 + 5 have the same color and this color is opposite to that
of card i — 1 if i > 1. Thus, e.g,, P(A)=0if i>47, P(A,NA)=0if i <j<i+86,
etc;; and By # 0 only for 1 <k <8. I won’t make you wade through the calculations.
Suffice it to say that two days’ work with a hand calculator (a computer wasn’t
needed!) produced the bounds

4640 < G < 4644, (4)

indicating that a 6-clump won’t even appear in the shuffled deck half the time—a
result wholly incompatible with statement (0). Not sure that I myself hadn’t erred, I
tried a “random” simulation by computer. Among 2000 simulated “shuffled decks,”
only about 45% had 6-clumps, a figure roughly 1.3 standard deviations from the value
(4) (but in the same ballpark). [1] was wrong, after all.
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3. A better method The foregoing method, though viable for the particular
parameters (m, k, t) = (26,26, 6) (using the notation of (1)), is far too cumbersome for
the general case, which calls for a general recurrence. Yet I had already tried, and
failed, to find such a recurrence, using a table obtained by brute-force enumeration
for ¢ =3, the smallest nontrivial value of the clump-length ¢. To fix notation, let
C,(m,k) denote the number of strings of m indistinguishable objects of Type A and k
indistinguishable objects of Type B (say 1’s and 0’s) in which no ¢-clump (run of
length t) occurs. The following table (5) gives values of Cy(m, k) for small m, k.

VALUES OF Cy(m, k)

m\k|o12 3 4 5 6 7 8 9 10 11 12
0Ol111 00 0 0 0 0 0 0 0 0
1 /123 2 1 0 0 0 0 0 0 0 0
2 /136 7 6 3 1 0 0 0 0 0 0
31027 1418 16 10 4 1 0 0 0 0
4 |0 1 6 18 34 4 43 30 15 5 1 0 0 (5)
5 [0 03 16 45 84 113 114 8 50 21 6 1
6 [0 0 1 10 43 113 208 285 300 246 157 77
7 |0 0 0 4 30 114 285 518 720 786 683

8 [0 00 1 15 87 300 720

9 [0 00 0 5 50 246 786

10 |00 0 0 1 21 157 683

Because the roles of Type A and Type B are interchangeable, the matrix (5) is
symmetric. Challenge: Can you find a recurrence that generates it? (If you'd like, stop
and do some trial-and-error before reading further. It may take a while.) My own
attempt had left me stumped.

But the events of December 1992 (my “odd” and “even” tests) brought the
problem back to my attention, and I took another look at Table (5). Let’s now examine
it together. The rows for m =0, 1,2 are familiar: They are the sequences of coeffi-
cients in the expansion of (1 +x +x?)" (the trinomial coefficients) for n =1,2,3. In
particular, each entry in rows m =1 and m = 2 of Table (5) (say in column k) is the
sum of the three entries from the preceding row in columns k, k — 1, k — 2. However,
for m > 3 this pattern fails; in fact, the rows no longer have left-right symmetry. So
let's ask: By how much does the pattern fail? Let Dy(m, k) be the answer to that
question; that is,

2
D(m,K) = ¥ Cy(m=1k=]) = C(m. ). (6)
j=

Let’s tabulate Dj:

VALUES OF Dy(m, k)

m\ K 0 1 2 3 4 5 6 7 8 9 10
0 -1 -1 -1 0 0 0 0 0 0 0 0
1 o 0o 0 0 0 0 0 0 0 0 0
2 o 0 0 0 ©0 0 0 0 0 0 0
3 1 2 3 2 1 0 0 0 0 0 0
4 o 1 3 5 5 3 1 0 0 0 0
5 o 1 4 9 13 13 9 4 1 0 0
6 o 0 2 9 21 3 34 26 14 5 1
7 o 0 1 7 24 5 79 8 T3 45 20
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This time, the rows have left-right symmetry all the way through m =35, with
nonsymmetry beginning at m = 6, whereas in (5) the nonsymmetry began at m = 3.
This suggests comparing row 6 of the D3 matrix with row 3 of the C; matrix:

k |012345678910

Cy3k)|0 2 7 14 18 16 10 4 1 0 O
Dy6,k) |0 0 2 9 21 32 34 26 14 5 1

Aha! Do you see the pattern? If not, let's make it easier by shifting the D; row 13
spaces to the left:

(Cyrow) 027 14 18 16 10 410
(Dyrow) 2921 32 34 26 1451

and now the scheme is as evident as in Pascal’s triangle: D4(6,k) = C,(3,k — 1) +
C5(3, k —2). A check of other such pairs of rows (row m of D, versus row m — 3 of
C,) reveals a similar pattern:

Dy(m, k) = Cy(m —3,k—1) + Cy(m — 3,k —2) (7)

with two exceptions: when 0 <k <2 and m=0 or. 3, the left side of (7) minus the
right side equals — 1 or + 1, respectively. Thus, the correct recurrence for C, (in view

of (6)) appears to be

Cy(m, k) = icg(m—l,k—i)— iCS(m—S,k—i)+e(m,k)

i=0 i=1
1, fm=0and0<k<?2 (8)
e(m,k)={ -1, ifm=3and0<k<2).
0, in all other cases

Generalizing (8) to arbitrary values of ¢ in place of ¢ = 3, a natural guess was that, for
all positive integers ¢ and all integers m, k,

t—1 t—1
C,(m,k)= Y C(m—1,k—i)— Y C,(m—t,k—i)+e(m,k)
i=0 i=1
1, ifm=0and0<k<t )
e,(m,k)y={ -1, ifm=tand0<k<t},
0, in all other cases

and numerical data (brute-force enumeration again) seemed to confirm it. At this
point, I found proof easier than discovery and soon had an elementary combinatorial
proof of (9). The proof is available to the reader on request, but will not be given
here; instead, we shall exhibit in §5 a simpler such proof of the equivalent Jackson
recurrence. At any rate, next on my agenda was to use (9) to obtain numerical results,
including answers to the specific questions (1) and (2) posed in §1.

4. Numerical results For a random sequence of m objects of one type and k of
another, the probability that a t-clump occurs is clearly

P,(m, k) =1—Ct(m,k)/(ml_:k).
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Using (9), a program to compute C,(m, k), and hence P,(m, k), was written, tested,
and run for various values of the parameters. One result was

P,(26,26) = 46424 ...,
agreeing with (4) (at which the programmer felt great relief). Two other results were
P,(26,26) = 77307...;  P,(26,26) = .97396...,

so that the phrase “almost always” in assertion (0) still seems exaggerated even with
t =5 in place of Gardner’s t = 6. (For ¢ = 4, the phrase seems more appropriate.)

As for my “odd” and “even” tests in December "92: The probability of no 3-clump
on the class test was

C,(16,15) / ( :13;) = 0042342, (10)

and the probability of no 3-clump at the final exam was

C,(15, 17)/( i’g) — 0028779... . (11)

If the two distributions were independent,* we would conclude that the probability of
a 3-clump occurring on neither exam was the product of the numbers (10) and (11),
namely

.00001218.. .,

less than 1 out of 82,000. (And yet it happened. A nonmathematical friend to whom I
reported the event—and the odds against its occurrence—reacted thus: “So I could
win the lottery!”)

Postscript. It is easy to find the expected number E = E(m, k,t) of noncontiguous
t-clumps in a sequence of m I's and k 0’s. Indeed, the probability that the i-th term
of the sequence begins such a run is ((m], + [k],)/[m + k], if i = 1 and is (k[m], +
mlk),)/Im+k],(m+k—¢)if 1 <i—1<m+k—t, where [x], denotes the product
x(x —1)...(x — (n — 1)). (Compare with the discussion following display (3).) Sum-
ming over all 4, since expectation is additive, we get

E(m,k,t) ={(k+1)[m],+ (m+D[k]}/[m+k], (@(A<t<m+k).

In particular, E(26,26,6) = .610.... Since this number clearly must exceed the
probability of at least one 6-clump in the shuffled deck, we don’t even need the actual
probability to see that statement (0) is much too strong. Similarly, with respect to our
question (2), E(16,15,3) + E(15,17,3) = 7.55.. ., so that the extraordinariness of “no
clumps” seems evident even before we have found the recurrence (8) or (9).

For n (fair) coin tosses, the formula for the expected number of ¢-clumps (obtained
similarly) is even simpler:

E(n,t) =(n+2—1¢)/2". (12)

*Approximate independence, at least, seems likely to me; I had instructed “friends” to sit apart, and the
two exams were held in different rooms with different seat layouts.
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It has been shown (e.g., in [4]) that if L, is the length of the longest run in a
sequence of n tosses, then E(L,) ~log, n as n — . (12) makes the latter intuitively
plausible. For example, if n = 2% (log, n = 1000), then E(n, 997) is extremely close
to 8 and E(n,1003) is extremely close to 1/8, making it seem very likely that
997 < L, < 1002. Viewed in this light, it is not surprising that the variance of L, is
nearly constant when n is large, a fact that Schilling’s award-winning article [7] calls
“remarkable” (as indeed it seems when first encountered). [7] and [4] give more
precise expressions for E(L,) and Var(L,).

5. A more efficient recurrence The number of terms on the right side of (9)
increases with ¢. In [6], Jackson gave a partial proof, using the theory of combinatorial
generating functions (as developed, e.g., in [5]) of the following alternate recurrence
for C,(m, k), in which the right side has only six terms no matter how large ¢ is:

C(m=1,k)+C,(m,k—1)—C,(m—t,k—1)—C,(m—1,k—1t)

Clm k) =8 G (=t k—t) + e (m, k)
1, if (m,k)=(0,0) or (¢,¢) (13)
ef(m,k)=1{ -1, if(m,k)=(0,t)or(t,0) -

0, otherwise

A referee of this article has pointed out that (13) can in fact be derived without
generating functions, as follows:

For fixed ¢, we call a sequence of 1’s and 0’s good if it contains no #-clump. A good
sequence of m ones and k zeros will be denoted by S(m, k); an S(m, k) beginning
with the digit i (=0 or 1) will be denoted by S,(m, k); and x> (where x =0 or 1)
will denote the sequence (x, x, ..., x) (¢ terms). Also, let [ A, B] denote the sequence
consisting of the sequence A followed by the sequence B.

By inspection, (13) holds if (m, k) = (0,0) or (0,¢) or (¢,0), so we assume (m, k) is
not one of those three pairs. Since (m, k) # (0, 0), every S(m, k) has the form

[1,S(m—1,k)] or [0,S(m,k—1)]. (14)

Conversely, since (m, k) # (0, t) or (¢,0), a sequence (14) is an S(m, k) if and only if
it is not of the form

[19,0,8(m—¢,k—1)] or [09,1,8(m—1,k—1t)]. (15)

Next, if (m, k) # (¢, t) then a sequence (15) also has the form (14) if and only if it is
not of the form

[10,00,8(m—t,k—t)] or [00,1?,8,(m—t,k—1t)]; (16)

the excluded sequences (16) all have the form (15); and their number is C,(m — ¢, k
—t). If instead (m, k) = (t,t), there are exactly two excluded sequences, namely
[10,0] and [0®, 1], and 2 = C,(0,0) + 1. In either case, the number of sequences
(15) not of the form (14) is C,(m —t, k —t) + ¢} (m, k), so that
no. of S(m, k)’s = (no. of sequences (14)) — (no. of sequences (15))
+C,(m—t,k—t)+ef(m, k),

which is precisely (13).
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6. Some exercises We asserted (§1) that the recurrences (9) and (13) are equiva-
lent; a nice exercise for the student is to prove this assertion algebraically, without
reference to combinatorics. Here are two more such exercises:

L. For fixed t, if d, =X,C,(n—k, k) (the n-th northeast-to-southwest diagonal
sum in the matrix C,), then

t—1
d,=2"(0<n<t); d,= L d,_ (nx1). (17)
j=1

For example, when t = 3 then d, =d,_, +d,_, (n > 3), and in fact the d’s are twice
the Fibonacci numbers: d, = 2F,,; when n > 1 (see table (5)). (17) can be proved
either combinatorially or by induction.

II. For fixed ¢, if r,, = £,C,(m, k) (the m-th row sum in C,), then

t—1
rm=tm+1 (OSm<t); rm=(t_ 1) Z rm—j (mZt). (18)
j=1

This can be proved by induction using (9); I haven’t found a combinatorial argument.
Either (17) or (18) can be used to check the matrix C,, after constructing C, from
(9) or (13).

7. Related problems Space does not permit a comprehensive listing here of the
literature on clump-related problems, but a few quite recent references (called to my
attention by a knowledgeable referee) deserve brief mention. Godbole [2] obtains an
explicit formula (as a sum) for the probability that, in the first n terms of a sequence
of m I's and k 0’s, no run of ¢ consecutive 1’s occurs. (I know of no such explicit
formula for “consecutive 1’s or consecutive 0’s,” which was the problem addressed
herein.) Sequences whose successive terms are independent (i.e., no parameters m, k)
are easier to deal with, and several articles have done so in considerable generality. In
particular, two papers in [3] treat “random n-letter words formed from an r-letter
alphabet” (r > 2): Suman [3, 119-130] obtains three formulas (involving sums) for the
probability that no t-clump occurs in such a “word”, and Chryssaphinou, et al. [3,
231-241] study the waiting time until at least one of a given set of patterns occurs (“at
least one ¢-clump” would be a special case). For readers wishing to pursue such
matters further, the aforementioned articles also contain useful bibliographies; in
addition, [3] contains recent articles on other clump-related topics.

Editor’s Note. After this paper was accepted, it was pointed out that a recursion for the probability of
clumps has been obtained by E. F. Schuster in [3], pp. 91-111. His recurrence is more complicated in that
the terms of his recurrence must themselves be obtained from a different recurrence. Schuster presents a

table of the probabilities that no ¢-clump occurs in a sequence of m 1’s and n 0’s, up to m +n = 50. Just
short of what’s needed for a deck of cards!
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A Symmetry Criterion for Conjugacy in Finite Groups

SOLOMON W. GOLOMB

University of Southern California
Los Angeles, CA 90089-2565

A standard technique in finite group theory is to partition the elements in some
natural way. The two most fruitful partitions of a group are into cosets and into
conjugacy classes. Lagrange’s theorem and factor groups are two consequences of
partitioning a group into cosets. The class equation and the Sylow theorems are two
consequences of partitioning a group into conjugacy classes (for more details, see, e.g.,
[1]) In this note we give a simple criterion for conjugacy.

DEFINITION. Two elements a and b in a group G are said to be conjugate if for
some element g in G, b =g 'ag.

The definition has several simple consequences.

1. Conjugacy is an equivalence relation on G, with respect to which the elements of

G are partitioned into conjugacy classes.

In a commutative group, each element is in a conjugacy class by itself.

3. In a non-commutative group, the identity element is in a conjugacy class by itself
(since g 'eg=e for all g), and, more generally, a group element ¢ is in a
conjugacy class by itself if and only if ¢ commutes with every element of the group.

4. If G is finite, the size of every conjugacy class in G divides the order of G (the
number of elements in G).

ro

To determine whether given elements @ and b in G are conjugate, it is certainly
sufficient to calculate g~ 'ag for all g in G, and see whether any of these equals b. To
determine the conjugacy classes in G, it is sufficient to calculate g~'ag for all g and
a in G. The purpose of this note is to show that these calculations are unnecessary if
the group table (or multiplication table) of G is already available. Although this
criterion for conjugacy is extremely simple to state and to prove, it seems to have
eluded generations of writers of textbooks on modern algebra in general and group
theory in particular.

CRITERION. Two elements a and b of a finite group G are conjugate if and only if
they can be found symmetrically situated relative to the main diagonal of the group
table.

We restate this criterion as follows:

THEOREM 1. Distinct elements a and b in G are conjugate if and only if there are
elements u and v in G such that a = uv and b = vu. (Thus, a is in row v and column v,
while b is in row v and column u of the group table, for some elements u and v in G.)

Proof. The products uv and vu are always conjugate elements in G, because
u (wolu = (v u)(vw) = vu.

Conversely, given conjugate elements ¢ and b in G, there is an element g in G
with b=g 'ag. Let u=g and v=g 'a. Then ww=g(g 'a) =a, while vu=
(g 'a)g =b. This completes the proof.
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It is useful to observe that the element a of the group G occurs in every row g in
column g~ 'a, in the group table of G.

Ficure 1 shows the multiplication table of Dy, the dihedral group of the equilateral
triangle, which is isomorphic to S, the group of all permutations on three symbols.
(The three vertices of the equilateral triangle are permuted in all possible ways by the
elements of Dj; hence the isomorphism with S;.) This is the smallest noncommuta-
tive group.

FIGURE 1
The group table for Dj, with the symmetrically situated pairs (B,C), (A, B), and (A,C)
highlighted. By Theorem 1, the conjugate classes in Dj are easily seen to be {I}, {R,, R,}, and
{A, B,C}.

In Ficure 1, I is the identity element; R, and R, are rotations by 120° and 240°,
respectively; and A, B, and C are 180° reflections in each of the three axes of the
triangle. We note that R, and R, are symmetrically situated three times in the table;
that each of the pairs (A, B), (A,C), and (B,C) are found twice in symmetric
locations in the table; and that I is symmetric only to itself. Thus, the conjugacy classes
in D, are {I}, {R}, Ry}, and {A, B,C}.

Each pair of conjugate elements a,b, with a #b, appears at least twice in
symmetric positions in the multiplication table for G. The precise multiplicity of
occurrence of pairs @ and b of conjugate elements in symmetric positions in the
multiplication table of G is given in the following theorem.

THEOREM 2. If a and b are conjugate elements of the finite group G, with a #b,
then there are n/k =r pairs of elements {u;, v} in G X G such that u,v;=a and
vu; =b, where n is the order of G, and k is the size of the conjugacy class in G to
which a and b belong.

Proof. Let a and b belong to a k-element conjugacy class K of the n-element
group G, and let C(a) be the subset of elements of G such that h™'ah =a for h in
C(a). 1t is immediate that C(a) is a subgroup of G. Let g, be any element of G such
that g 'ag, = b. Then every element g; of the right coset C(a)g, of C(a) also gives
g 'ag; = b, and the right cosets of C(a) are in one-to-one correspondence with the
elements of K. Thus, the order r of C(a) is n/k. Let the elements of C(a) be
{hy, hy, ..., h,}. Then the elements of the right coset C(a)g, are {g,, g,, ..., g,} with
g;=h;g, fori=1,2,... r. Note that

gitag, = (hg) 'a(h,gy) = g (hi'ah,) g, = gi'ag, =b
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for each g;, i=1,2,...,r. Let u; =g, and v,=g; 'a. Then u,v;=a and vu, =D for
each i, where u; =g, runs through the r distinct elements of C(a)g,. Conversely,
suppose there are any two elements u and v in g with uv=a and vu =b. Then
v=u""ta, and vu =u"'au = b; so u is an element g in the coset C(a)g;.

Note. In Ficure 1, we observed that each of the pairs (A, B), (A,C), (B,C) occurs
twice in symmetric positions relative to the main diagonal, while the pair (R,, R,)
occurs three times. In view of Theorem 2, this corresponds to the fact that { A, B, C} is
a conjugacy class with 3 elements, and 6,/3 = 2; while {R,, R,} is a conjugacy class of
2 elements, and 6/2 = 3.

REFERENCE

1. Jacobson, N., Basic Algebra I, W. H. Freeman, San Francisco, CA, 1974.

More on the Converse of Lagrange’s Theorem

GUY T. HOGAN
Norfolk State University
Norfolk, VA 23504

It is certainly true, and clear, beyond peradventure, that the Theorem of Lagrange,
which says that the order of a subgroup of a finite group divides the order of the
group, is one of the most basic results in the theory of finite groups. See Herstein
[4, p. 66], or Birkhoff and MacLane [1, p. 111]. Indeed, it may be claimed that this
was the result that started the “arithmetization” of the theory.

Recently there appeared in this MAGAZINE [2, p. 23] and later in [3, p. 139] a simple
argument, based on the properties of cosets, showing that A, (the alternating group
on four symbols) has no subgroup of order 6. This, of course, means that the natural
converse of Lagrange’s Theorem is false, a fact known for almost 200 years [2,3].
What we offer here is another simple proof of the same result, using nothing more
sophisticated than element orders, and Lagrange’s Theorem itself.

Using the same notation as in [2], we write A, as

A, ={(1),(12)(34),(13)(24), (14)(23),(123),(132),
(124),(142), (134), (143), (234), (243)} .

Note that the first four elements listed form a subgroup, V, the Klein four-group, in
which the product of any two of the three involutions (elements of order 2) is the
third one. It is also worth pointing out that the next eight elements are all of order 3.
Suppose there exists a subgroup H of A,, |H|= 6. Since 6 is even, there exists an
element, b, of order 2 in H. And since there are eight elements of order 3 in A,, at
least two of them must belong to H. Let t be one of them. Now tbt ™' belongs to H
and has order 2. If tht ™! = b, then t and b commute, and th would have order 6. But
there are no elements of order 6 in A,. Hence, tht ! =¢ is a second element of
order 2 in H, so that bc belongs to H as well. Finally, since all three involutions
belong to H, it follows that V is a subgroup of H, contradicting Lagrange’s Theorem.
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A Persian Folk Method of Figuring Interest

PEYMAN MILANFAR
SRI International

333 Ravenswood Ave.

Menlo Park, CA 94025

I recently learned a very quick and effective way of estimating monthly payments on a
loan. My father showed me the method, having learned it himself from my grandfa-
ther, who was a merchant in nineteenth century Iran. While its origins remain a
mystery, the method is still in use among merchants all around Iran, and perhaps
elsewhere.

My father used the formula:

1
Number of months

Monthly payment = (Principal + Interest);

he calculated the interest as
Interest = % Principal X Number of years X Annual interest rate.

The exact formula, assuming interest accrued monthly, can be found in any basic
finance textbook:

_ r(l+r)NP
_(l+r)N—l’ 1)

where C is the (exact) monthly payment, r is the monthly interest rate (1/12 the
annual interest rate), N is the total number of months, and P is the principal. With
this notation, the folk formula becomes

1
Cy= (P + 3PNr). (2)

In many cases, C; is a surprisingly good approximation to C. As an example, for a
4-year auto loan of $10,000 at an annual rate of 7% compounded monthly, the exact
formula gives monthly payments of $239.46 while the folk estimate gives $237.50.

To see why the approximation works, we regard C as a function of r, with all other
quantities held fixed. (The singularity in (1) at r=0 can be cancelled out) A
straightforward calculation shows that the first order Maclaurin polynomial for C(r)
has the form
1
N
which closely resembles the definition of C,. For a fixed P, when r is sufficiently
small and N sufficiently large, the difference between (2) and (3) is small.

C(r) = (P+%P(N+1)r), (3)
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where C is the (exact) monthly payment, r is the monthly interest rate (1/12 the
annual interest rate), N is the total number of months, and P is the principal. With
this notation, the folk formula becomes

1
C,= W(P+§PNr). (2)

In many cases, C; is a surprisingly good approximation to C. As an example, for a
4-year auto loan of $10,000 at an annual rate of 7% compounded monthly, the exact
formula gives monthly payments of $239.46 while the folk estimate gives $237.50.

To see why the approximation works, we regard C as a function of r, with all other
quantities held fixed. (The singularity in (1) at r=0 can be cancelled out) A
straightforward calculation shows that the first order Maclaurin polynomial for C(r)
has the form

C(r)z—z%f(P+%P(N+l)r), (3)
which closely resembles the definition of C,. For a fixed P, when r is sufficiently
small and N sufficiently large, the difference between (2) and (3) is small.
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Identities on Point-Line Figures
in the Euclidean Plane

GUIDO M. PINKERNELL
University of Wales, College of Cardiff
Cardiff CF2 4YH Wales, UK

Introduction In [3] Larry Hoehn gave a proof of a theorem that is known as the
Theorem of Pratt—Kasapi [1]. This note collects some ideas on how to generalize the

theorem so that it holds not only for the pentagram but also for many other figures of
the Euclidean plane and their duals.

THEOREM 1. In a pentagram A; A, Ay A, A; with By, By, By, B,, Bs as the points of
intersection of its sides (Ficure 1), the Pratt identity holds:

AIBI AZBZ ASBS A4B4 A5B5 _
BlAZ BZAS BSA4 B4A5 BSAI B

Proof. In any triangle ABC the sine rule

sin «
sin

i (1)

k)

holds. Apply this to the five “tips” of the star-shaped pentagram, then multiply and
simplify the five equations while observing that two adjacent triangles or “star-tips”
have equal angles at their common vertex.

A,

As

FIGURE 1
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From the idea of the proof one can easily derive a more general, quite
straightforward method to prove similar theorems on a pentagram and other figures.
Corresponding to the five “tips” A,,, B, B;, (i = 1,...,5) of the pentagram where it
is understood here and elsewhere that A;,, = A,, one has to find a closed chain of
triangles where two adjacent triangles have two common lines as sides. Then the point
of intersection of the sides is a common vertex and the angles of each triangle at this
point are either vertically opposite, adjacent, or the same angle counted twice. In all
cases the sines of the angles are equal, and by multiplying and simplifying the
equations (1) for all triangles of the chain we obtain an identity again. Any identity
obtained this way by a triangle chain we will call a Pratt identity.

It is easy to formulate the identity straightaway once a triangle chain is found: For
each triangle, (1) selects two sides, now considered as segments. All these segments
form a closed polygon that exactly follows the ratios of the resulting Pratt identity.
Ficure 2 demonstrates the use of a triangle chain for proving Theorem 1; Ficure 3
shows the result of a different chain in a pentagram.

A, A

AB, AyB, AsBy ABy AsBs ABy AsAy ByBy ByAy AsBy _
B/A, ByA; ByA, ByA; BsA Bl A5 A3By BgBy AyA; B; A
FIGURE 2 FIGURE 3

Pratt identities on point-line figures The definition of a triangle chain does not
depend on the specific order of the points on the lines. From Ficure 4 it becomes
apparent that, when changing the order—here lines AC and DE meeting in
B—sin « still equals sin 8 while the triangles ABD and CBE in each case have two
common lines as sides, as required in the definition. Hence the corresponding Pratt
identity remains invariant. For the point-line structure of a pentagram A, A, A; A, A;,
which is given by

ten points A, B, i=1...,5
and five lines a;=AA,, i=1,...,5 (€))
such that B,=a,Na,,,, i=1,...,5,

this argument allows us to state the following generalization of Theorem 1. A
point-line figure is said to be isomorphic to that of a pentagram if it meets the
conditions (2).


http://www.jstor.org/page/info/about/policies/terms.jsp

VOL. 69, NO. 5, DECEMBER 1996 379

o c a\B a=B

FIGURE 4

THEOREM 2. The Pratt identity of Theorem 1 holds on any point-line figure
isomorphic to that of a pentagram.

Some examples are given in Ficure 5(a) and Ficure 5(b).

(b)

AlBl AQBQ ABB3 A4B4 A5B5 _
B,A, B, A, ByA, B,A; BsA,

FIGURE 5

1

Triangle chains in other figures It is obvious that triangle chains can be found in
any star-shaped n-gon, like a pentagram, heptagram, etc. One has only to take the
“tips” of the figure as the triangles. But on the other hand, constructing a simple
closed triangle chain without having defined a point-line structure beforehand can
lead to Pratt identities on many other figures, some of which might be unfamiliar.
Ficure 6(a) and Ficure 6(b) show the well-known theorems of Menelaus and Ceva,
Ficure 6(c) could be described as Ceva without concurrent transversals, and Ficure 7
is a solution of a problem by H. Giilicher [2].
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C
C C E
E
E F
F F
A ZAB. ) )
D A B A D B A D B
AD BE CF AD BE CF _ AD BH CF AG BEC] _ _,
DBECFA~ ~ DB EC FA — DB HC FA GB EC]A_
(@) (b) (c)
FIGURE 6
Sa
S

PiS31 S33M S11S13 P3So3 Spo M Sy383 PoSyy Sy M S, M §35 8y
Sa1833 MS) S13P; Sy3Sy MSszy Sy Py SipSy MS, MSy Sy Py

FIGURE 7

One usually decides whether such an identity equals 1 or —1 by observing whether
it contains ordered segments in opposite directions on the various lines. Thus we are
led to the concept of an ordered point-line figure. We deliberately ignored this
concept at the beginning, when we used the sine rule, which does not take account of
signs.

Identities on dual figures The symmetry of the sine rule (1) leads to a second
group of identities, which holds on the dual of a given figure. When converting every
point P into a line p and vice versa without changing the incidences, a triangle ABC
of a triangle chain becomes a triangle formed by the three lines a, b, ¢. And instead of
two common sides, two adjacent triangles now have two common points, ie., a
common side considered as segment. (See Ficure 8.) Hence after multiplying and
simplifying the equations (1) of the triangle chain, the right-hand side of each (1) will
have vanished and an identity is left consisting only of sines. Interestingly enough, the
actual formulation of this new Pratt identity is similar to the original: One simply has

to replace “A; B;” by “sin Za;b;,” i.e., the sine of the angles in which the lines a;, b,
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Ay
4
by b,
B, By As
A, s
- a a dual
! 4 figures
B,
A, A, by
A; B; = length of segment A, B, a;b; = sine of angle at a; N b,
A B, A;By A3By Ay B,y AsBs _ ayb, ayby azhy a,b, ashs _
By A, ByA; BjA, ByA; B;A, biay byay byay byas bsa,
FIGURE 8

intersect. What we have exercised on the pentagram can obviously be generalized to
any figure where there exists a Pratt identity. Hence

THEOREM 3. Given any Pratt identity on a point-line figure of the Euclidean plane,
involving lengths of segments A; B, there exists a corresponding identity on the dual
structure involving sines of angles £ a;b;,

Appendix

To prove Pratt—Kasapi I was originally looking for a different proof via Ceva’s
theorem. I came across something else that is quite nice and should be mentioned
here:

THEOREM 4. Let M be any point inside the inner pentagon B,ByB;B,Bs of a
convex pentagram with the notation of Theorem 1, and let C; be the point of
intersection of the ray MB; and the side A A,,,, (i=1,...,5) (Ficure 9). Then

B As

B,

Ag Cy
FIGURE 9
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AICI A2C2 A3C3 A4C4 A5C5 =1 3
Cl A2 C2 AS CS A4 C4 A5 C5 Al S ( )

This is a corollary of the following theorem (which is more an instruction to
construct a point from given points):

THEOREM 5. Let C,,C,,C3,C, be points on the sides of a convex pentagon
A Ay Ag A, Ay If Cy is constructed as described below, then the equation (3) holds.

Construction of Cs. Let M be any point inside A; A, A; A, A;. For each of the five
triangles A;A;,; M we will construct—one after another—the situation of Ceva’s
theorem:

In triangle A, A, M let D, be a point on the side A, M. Then define B, =
A,D,NMC,, D= A, B, N MA,.

In triangle A, A;M define B, = A;D, N MC,, D, = A, B, N MA,; (Ficure 10).

Similarly construct Ds, D, in the triangles A;A,M, A, A;M.

In triangle A;A M define B;=A,D,NA;Ds. Then C5=A;A, N MB; is the

FIGURE 10

point we were looking for.

For a proof apply Ceva’s theorem on each of the triangles A; A, | M and multiply
and simplify the corresponding equations.

Theorem 4 then follows when A,, A,,,, D, are collinear.

The author is grateful to the referees and to Dr. J. F. Rigby of the University of Wales College of Cardiff
for their various helpful comments.
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PROBLEMS

GEORGE T. GILBERT, Editor

Texas Christian University

ZE-LI DOU, KEN RICHARDSON, and SUSAN G. STAPLES, Assistant Editors

Texas Christian University

Proposals

To be considered for publication, solutions
should be received by May 1, 1997.

1509. Proposed by David Callan, University of Wisconsin, Madison, Wisconsin.

Let A be a real n Xn matrix satisfying (i) each row sums to 1; (ii) each entry
immediately above the main diagonal is 1/2; (iii) all other entries above the main
diagonal are 0. Prove that the permanent of A is 1/2""%.

(The permanent of a matrix is X, < 5 ], @, ,;)- Thus, it is similar in form to the
determinant: £, . ¢ (= ¥ OTI_ a, 4

i,o(

1510. Proposed by Detlef Laugwitz, Technische Hochschule Darmstadt, Darmstadt,
Germany.

Find the largest positive number ¢ such that for every positive integer n, there is at
most one perfect square in the set {1 +k%n: 2 <k <cvn}.

1511. Proposed by “Ruby Rose Z'L,” Pacific Lutheran University, Tacoma,
Washington.

Let P,,...,P; be 7 points in the plane. Consider the 35 convex polygons %

formed by selecting 4 of the 7 points and taking their convex hull. Prove that:

(i) Among any 4 of the polygons &, one can always find 3 that have a point in
common.

(ii) There are 3 points in the plane such that every polygon contains at least one of
the 3 points.
(iii) There are configurations of 7 points for which there do not exist 2 points such
that every polygon contains at least one of the 2 points.

We invite readers to submit problems believed to be new and appealing to students and teachers of
advanced undergraduate mathematics. Proposals must, in general, be accompanied by solutions and by any
bibliographical information that will assist the editors and referees. A problem submitted as a Quickie
should have an unexpected, succinct solution.

Solutions should be written in a style appropriate for this MAGAZINE. Each solution should begin on a
separate sheet containing the solver’s name and full address.

Solutions and new proposals should be mailed to George T. Gilbert, Problems Editor, Department of
Mathematics, Box 298900, Texas Christian University, Fort Worth, TX 76129, or mailed electronically
(ideally as a LATEX file) to g.gilbert@tcu.edu. Readers who use e-mail should also provide an e-mail
address.

384
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1512. Proposed by Arthur L. Holshouser, Charlotte, North Carolina, and Benjamin
G. Klein, Davidson College, Davidson, North Carolina.

Let R be a commutative ring such that x> =x for every x €R. For x,y €R,
let F(x,y)=xy—x*y—xy>—x>y>. If F(a,b)=a and F(b,c)=b, prove that
F(a,c)=a.

1513. Proposed by Loren C. Larson, St. Olaf College, Northfield, Minnesota.

Can every set of 4n points in the plane, no three of which are collinear, be evenly
quartered by two mutually perpendicular lines?

(The original, continuous version of this question appeared in Hugo Steinhaus” One
Hundred Problems in Elementary Mathematics, Dover, 1979, 26.)

Quickies

Answers to the Quickies are on page 391.

Q856. Proposed by Jerrold W. Grossman and Stephen Mellendorf, Oakland Univer-
sity, Rochester, Michigan.

A football league with 2n teams draws up the first two weeks of its schedule such
that each team plays one game each week. There is no restriction on two teams
meeting more than once. Assume that each team in a given game has a fifty percent
probability of winning and that the results of the games are independent.

(i) Determine the probability that each team’s record is 1-1 at the end of two weeks
(as a function of the schedule).

(i) Assume that each week’s schedule is a random matching. Determine the probabil-
ity that each team’s record is 1-1 at the end of two weeks.

Q857. Proposed by Wu Wei Chao, He Nan Normal University, Xin Xiang City, He
Nan Province, China.

Let 0<@,<ay< - <a, and 0<b, <b,< -=- <b, be given, with X/_,a,>
'_1b;. In addition, assume there exists k with 1 <k <n so that b, < ¢, if i <k and
b,>a, if i > k. Prove that

n n

a;>11b,.
i=1 i=1

Q858. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada.

Show that the Diophantine equation
22+ 27y%22 (y +2)° = 4(y® +yz + z2)3

has an infinite number of integral solutions (x, y, z) with x, y, and z relatively prime
and xyz # 0.
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Solutions

An Euler’s Phi-Function Congruence December 1995

1484. Proposed by Lenny Jones, Shippensburg University, Shippensburg, Pennsyl-
vania.

Let o(n) be the sum of the positive divisors of the positive integer n and let ¢(n)
be Euler’s totient function. For an arbitrary positive integer k, find all positive
integers n that satisfy

nfr(n) =2 (mod ¢(n)).

Solution by L. L. Foster, Northridge, California.

For a given k > 1, the congruence is satisfied when n = 1, a prime, 4, or 2¢q, where
q is any odd prime having the property that (g — 1)/2 divides 3-2% — 1.

The congruence is easily seen to hold for all k& when n =1, any prime, 4, or 6. For
a given k, suppose that n is another integer such that the congruence holds. Write
n=TI1]_, p/, where the p, are distinct primes and the «; are positive integers. Then

[Ipto(n)=2{mod [Tp*~'(p,—1)|.
i=1 i=1

If ;> 1, then p~! divides 2, hence p, =2 and @, = 2. In this case, n = 4m, where
m is odd. If m > 1, then ¢(n) =0 (mod4) and 4 divides 2, a contradiction. We have
the same contradiction if we suppose that n has two (distinct) odd prime factors p,
and p;. For then 4 divides (p;,+ 1)(p;+ 1) which divides o(n), and 4 divides
(p; = D(p; — 1) which divides ¢(n). Hence we need only consider n =2q, where
g > 3 is an odd prime. It follows that ¢(n) =g — 1 and

nfo(n) =3-2%*(¢+1) =2 (mod g — 1).

Equivalently, 3-2% — 1 =0 (mod(g — 1)/2). It is not difficult to prove that such an
odd prime g must be of the form 12m — 1. The examples g =71 and ¢ = 83 show
this is not sufficient.

Also solved by Robin Chapman (United Kingdom), John Christopher, Con Amore Problem Group

(Denmark), D. Kipp Johnson, O. P. Lossers (The Netherlands), Heinz-Jiirgen Seiffert (Germany), Western
Maryland College Problems Group, and the proposer.

Integrality of the Arithmetic-Geometric Mean Ratio December 1995

1485. Proposed by Yasutoshi Nomura, Hyogo University of Teacher Education,
Hyogo, Japan.

Let n > 1 be a natural number and consider the statement Q,:
There exist positive integers x,, x,,..., x, for which the arithmetic-geometric
xy oty

n
nry A,

mean quotient is an integer greater than 1.

(a) Show that Q, is false.
(b) Show that Q, is true for even n>2 or for prime n congruent to 5 modulo 6.
(c)* Find another n for which Q, is false or an infinite family for which it is true.


http://www.jstor.org/page/info/about/policies/terms.jsp

VOL. 69, NO. 5, DECEMBER 1996 387

Solution by John S. Sumner and Kevin L. Dove, University of Tampa, Tampa,
Florida.

(a) Suppose (x7 +x3)/(2x,x,) =k for some integer k. By factoring and canceling,
we may assume that x; and x, are relatively prime. Then x7 + x5 = 2kx, x,, so that
x; divides x; and x, divides xi. Hence x; =x, = 1, proving that k = 1.

(b) If n is even, then (n —1)""! = —1 (mod n). For 1 <i<n —1, let x;=1, and
let x, =n — 1. Then

i+l 1+ (n—-1)""
nxy...x, n

n

is an integer greater than 1, since n > 2.

Similarly suppose n is a prime congruent to 5 (mod6). Let x,_, =n—1, let
x, =n®—3n + 3, and otherwise let x; = 1. Since n? —3n +3=(n — D(n —2) + 1, it
follows that n — 1, n, and n® — 3n + 3 are pairwise relatively prime. It is straightfor-
ward to show that

(n—1)°= —n+2 (mod n® - 3n + 3),
and then that
(n-1)°=1 (mod n* —3n +3).
Using these observations and the fact that 3" = 3 (mod n), it is clear that

e

n
nry ... x,

is an integer exceeding 1.

(c) Let p be an odd prime and k > 1 a natural number. We show that Q,, is true
for n =p*.

For1<i<n—1,let x;,=1, and let x, =p*~' +p*~2 + -« +p + 1. Define m so
that p*~! +p*~2 + --- +p = pm. The binomial theorem yields

k
k
(P4t 1) = (p. )pimi~
i=0\ !

If k <i <p*, then clearly p* divides ( p'k)pi. The power of p dividing i! for 1 <i is

i i

—|+l=5|+ ==+ 5+ = <i.
[”j [PQJ P p? p—1°"

Thus, for 1 <i <k, we see that

is divisible by p*~'. Hence

(pk—l +pF 4 hp + l)pks 1 (mod pk).
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Using this and the fact that p* —1=(p — D(p*~' + - +p+ 1), it is clear that
(xf + -+ +x2)/(nx, ... x,) is an integer exceeding 1.

Comment. The editors of this section will consider significant progress on part (c)
for publication during their term as editors.

Parts (a) and (b) also solved by Robin Chapman (United Kingdom), Con Amore Problem Group
(Denmark), Gerald A. Heuer, D. Kipp Johnson, Yanir and Zalman Rubinstein (Israel), Michael Vowe
(Switzerland), and the proposer. Part (a) was also solved by Can A. Minh (student).

A Remainder for a Logarithmic Series December 1995
1486. Proposed by Paul Bracken, University of Waterloo, Waterloo, Ontario, Canada.
For —1<x, x # 0, define the sequence 6,(x) by

— x? n—1 en(x)xn
log(l+x)=x— 5+ +(=-1)"  ————.

Show that the sequence (6,) is monotonic in n and find its limit.

Solution by Frank A. Horrigan, Raytheon Electronic Systems, Tewksbury,
Massachusetts.

By repeated division or other means,

l _ 5 5 a1 tn—l
m—l—t+t —t°+ '+(—1) 17
Integrating term-by-term, for all x > —1,
X dt x2 xS x4 a1 xt"‘l
10g(l+x)=j;)m=x—?+—3——T+“‘+(—l) Omdt‘

Excluding the trivial case x =0,

)= [ [

)y T+t 1T sl/"
for all n>0.
As n approaches ®, s'/" approaches 1 for 0 <s < 1, hence
lim 6,(x) = o
nl_l;rgo n(k) - 1+«

To show monotonicity, consider the difference of successive terms,

1
1 1
bun(0) = 00 = [ (e — 1) &
0

. 1 (Sl/n _Sl/(n+1)) dS
, (1+x81/(n+1))(1+x81/n)

Since the integrand is negative for 0 <s <1 and —1 <x, the integral is negative.
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Therefore (6,(x)) is monotonic in n, depending on the sign of the variable x:
l
0,(x) <6,1(x) <73 < for =1 <x <0,

0,(x) > 6,1(x) > 7= 1 ~ for 0 <x.

Also solved by David M. Bloom, Robin Chapman (United Kingdom), Con Amore Problem Group
(Denmark), Hans Kappus (Switzerland), Benjamin G. Klein, Kee-Wai Lau (Hong Kong), Nick Lord
(England), O. P. Lossers (The Netherlands), Roger Pinkham, Heinz-Jiirgen Seiffert (Germany), Kenneth
Schilling, Michael Vowe (Switzerland), and the proposer. There was one incorrect solution.

Concurrency in Tangent Circles December 1995
1487. Proposed by Edward Kitchen, Santa Monica, California.

Given circles & and €’ with centers O and O', and circles &, and %, externally
tangent to & at points M, and M, and internally tangent to " at points N, and N,,
prove that the lines M, N;, My, N,, and OO’ are concurrent.

I. Solution by Hoe Teck Wee, Lengkok Bahru, Singapore.

The result is trivial if M,, N,, O, and O' are collinear, for i =1 or 2. Hence, we
may assume that M;, N;, O, and O’ are not collinear, for i =1 and 2. Then, let P,
denote the point of intersection between the lines OO" and M;N;, and let O; denote
the center of the circle €. Also, let r, r', and r; denote the radii of &, ', and &,
respectively. In terms of directed line segments, we have

oM, 1 ON, +

o -7 and O, =

Applying Menelaus’ Theorem to AOO’O;, we have

OP, ON, O,M,

oP ON oM b

hence

Therefore, P, = P,, so M;N;, My,N,, and OO’ are concurrent.

I1. Solution by Michael Woltermann, Washington and Jefferson College, Washington,
Pennsylvania.

Let C" with center O” be externally tangent to C at M and internally tangent to C’
at N. Then M is between (ﬁ)nd 0", and N is between O’ and O". If O, O’, and O”"
are not collinear, then ray NM intersects segment OO’ at a point P. Applying the law
of sines to AOMP and AO'NP,

OP OM 4 OP ON
sinZ OMP _ sinZOPM *™ SnZONP ~_ SsinZ OPN "
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Since O"M = O"N, we have £ OMP = £ O"MN = £/ O'NP, while £ OPM and £ O'PN
are supplementary. Thus

OP _ OM
OP  ON-
If O, O" and O" are collinear, the line MN contains segment OO’. Since the point
P that divides segment OO’ into segments proportional to the radii of C and C’ is

uniquely determined, it follows that lines M, N;, My,N,, and OO’ are concurrent
at P.

Also solved by Anchorage Math Solutions Group, Francisco Bellot Rosado and Maria Ascension Ldpez
(Spain), Robin Chapman (United Kingdom), Con Amore Problem Group (Denmark), Hans Kappus
(Switzerland), Victor Kutsenok, Neela Lakshmanan, Jianyuan Liu (China), Kwan Sze Ming (Hong Kong),
Jose Heber Nieto (Venezuela), David Zhu, and the proposer.

A Product and Sum Inequality December 1995
1488. Proposed by Heinz-Jiirgen Seiffert, Berlin, Germany.

Let n be a positive integer. Show that if 0 <x, <x, < -* <x,, then

1o+

n J 1
Y11 ;—) >2"(n+1),

j=0k=1

with equality if, and only if, x, =x,= - =x, = 1. (Empty products are understood
to be unity.)

Solution by Kee-Wai Lau, Hong Kong.

From 1 +x; > 2y/x,, it follows that IT{_,(1 +x,) > 2"y/x,x, --- x,, . Thus we need
only prove that

noJ
VXi%g X, ( Y I1 xi) >n+1.
The left-hand side of this expression equals

XgXg " X Xk, o X

2%3 " 3%y

Vaixg o x, + ol =
X1 %g

+ al +
XpXe *tr Xy Wclx2 X,

By the arithmetic mean-geometric mean inequality, the last expression is greater than
or equal to
i XoXg " Xp [ X3Xy "X,
(n+l)[(xlx2 x")( X )( X1 %Xg )

( x, ) 1 1/@n+2)
X oeee
XpXg Xy J\ X1 Xg 0 Xy,

ln/2] (n+1-2k)/(@2n+2)
( n+1—k )

-+ 1

Since x,>x,_; > ** >x,, or more generally if x,,,_; >x; for k<[n/2] the

n =

terms in the last product are greater than or equal to 1. The claimed inequality
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follows. Retracing the steps in the proof above, it is easy to see that equality holds if
and only if x, =x,= - =x, =1

Also solved by ]. C. Binz (Switzerland), David Callan, Robin Chapman (United Kingdom), Con Amore
Problem Group (Denmark), Qais Haider Darwish (Oman), Tim Flood, Jennifer Hoornstra, Jianyuan Liu
(China), O. P. Lossers (The Netherlands), Kwan Sze Ming (Hong Kong), Can A. Minh (student), Kenneth
Schilling, Achilleas Sinefakopoulos (student, Greece), Michael Vowe (Switzerland), Robert |. Wagner,
Hoe Teck Wee (Singapore), Western Maryland College Problems Group, David Zhu, and the proposer.

Answers

Solutions to the Quickies on page 385.

A856. (i) Form a graph whose vertices are the 2n teams, and place an edge between
two vertices if they play each other during the first two weeks. (If rematches occur,
there are two parallel edges.) Clearly every vertex has degree two, so the graph is a
disjoint union of cycles. Once the outcome of one game within a cycle has been
determined, there is a unique set of outcomes of the rest of the games within that
cycle that will result in each team in the cycle having a 1-1 record. Therefore, the
probability of all 2n teams ending up at 1-1 after two weeks is (1/2)2"¢, where c is
the number of cycles.

(i) For every team to end up with a 1-1 record, the winners in the second week
must be exactly the losers from the first week. We may specify the matchings and
outcomes for the second week by first choosing the n winning teams and then pairing
each winning team with a losing team. From this, we see that the probability that each

team’s record is 1-1 at the end of two weeks is 1/ (zn” )

Comment. The method of solution shows that for every two-week schedule, if one
assumes each team has a chance of winning in each game, it is possible for all 2n
teams to end up with a 1-1 record.

A857. Suppose that a,,...,a,,b,,..., b, give a counterexample to the claim. Let
d;=a, and b;=b,a;/a; for i=1,...,n. Then d,—b;="(a;,—b)a,/a,>a;—b;.
Permuting the i’s if necessary, we see that a/,...,d,,b),..., b, also give a counter-
example to the claim. Applying the arithmetic-geometric mean inequality to ', ..., b;,
yields IT/_, b, < ((1/n) X}, b))" < ((1/n)X]_,d;)" =TT, d,, a contradiction.
A858. I. Since 4(y®+yz+22)°—27y%z%(y +2)* =(y —2)*(y + 22)*(z + 2y)?%,
the general solution is immediate.

1I. Provided by the Editors. The roots of f(t) =1>—(y® +yz +2*)t + yz(y + z)
are y, z, and —y — z. Therefore, the discriminant of this cubic satisfies

4(y®+yz +/:2)3 —27y%z%(y +z)2 =(y ——z)g( y+ 2z)2(2y +z)2.

Thus every integral pair (y, z) with yz(y —z)(y +22)2y +z) # 0 gives rise to two
integral solutions (x, y, z) to the given equation with xyz # 0. In particular, we may
take y and z to be distinct, relatively prime, positive integers.

Correction

Q841, December 1995. The word “nonhomogeneous” in the problem statement
should read “homogeneous.”
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PAUL J. CAMPBELL, editor
Beloit College

Assistant Editor: Eric S. Rosenthal, West Orange, NJ. Articles and books are selected for
this section to call attention to interesting mathematical exposition that occurs outside the
mainstream of mathematics literature. Readers are invited to suggest items for review to
the editors.

Prime time, New York Times Magazine (6 October 1996) 31. News track: Largest prime,
Communications of the Association for Computing Machinery 39 (11) (November 1996) 10.
Holden, Constance (ed.), Random samples: Grassroots search for primes ..., Science 273
(9 August 1996) 743. Gillmore, Dan, Computer scientists make a prime discovery that’s
too long to print here, Newark (NJ) Star-Ledger (4 September 1996) 5.

A new largest known Mersenne prime (and largest known prime) has been identified: Ms4 =
21,257,787 _ 1 Like recent predecessors, this Mersenne prime was found by David Slowinski
and co-workers at Cray Research. But why leave it to Cray? Throughout the U.S. and the
world, there are millions of microcomputers like yours—idle just about all day (and night).
Why not donate your computer’s unused potential to mathematics? You too—well, your
Pentium-processor microcomputer—can now join “The Great Internet Mersenne Prime
Search”! More than 400 volunteers are working with the project, at http://ourworld.
compuserve.com/homepages/justforfun/prime.htm . In fact, the project was 90% of the
way through checking the very same number when the announcement came from Cray
Research.

Calinger, Ronald (ed.), Vita Mathematica: Historical Research and Integration with Teach-
ing, MAA, 1996; xii + 358 pp, $34.95(P). ISBN 0-88385-097-4. Bos, Henk J.M., Lectures
in the History of Mathematics, American Mathematical Society, 1993; x + 197 pp, $82.
ISBN 0-8218-9001-8.

The first of these two books celebrates and advocates the idea that the history of mathe-
matics should be incorporated in the teaching of mathematics. Three essays discuss histori-
ography and the use of sources, the bulk of the book is devoted to specific historical studies,
and a dozen articles deal with integration of history into mathematics teaching, including
the origins and teaching of calculus. The second book collects essays by a single researcher
in the history of mathematics, who presents historical studies but also considers mathe-
matics in a larger historical context. Particularly engaging is his last essay, “Mathematics
and its social context ... ,” which takes up the big questions about the relations between
mathematics and society, the mathematical needs of adult life, and historical “laws” about
the development of mathematics.

Kolata, Gina, Paul Erdds, 83, a wayfarer in math’s vanguard, is dead, New York Times (24
September 1996) A1, B8. Pearson, Richard, Paul Erdés: An eccentric titan of mathematical
theory, dies, Washington Post (24 September 1996). Krauthammer, Charles, Paul Erdés,
sweet genius, Washington Post (27 September 1996).

Paul Erdds (1913-1996), with whom hundreds of mathematicians wrote joint papers, died
of a heart attack while in Warsaw at a mathematics conference.

392
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Hively, Will, Math against tyranny, Discover 17 (11) (November 1996) 74-85. Ramirez, An-
thony, Why the election is like baseball, New York Times (3 November 1996), Section 4, 4.
Natapoff, A., A mathematical one-man one-vote rationale for Madisonian presidential vot-
ing based on maximum individual voting power, Public Choice 88 (1996) 2591F.

Just about when this MAGAZINE is delivered, the electoral college will elect the president of
the U.S. Voters in November chose electors pledged to candidates, with each state getting as
many electoral votes as seats in Congress (plus three for the District of Columbia). In some
past elections, the electoral college did not choose the winner of the popular vote. So, is the
electoral college a good idea? Yes, says Alan Natapoff, a physicist at MIT, who has modeled
the electoral process and proved a theorem: Individual voting power—the probability that
the person’s vote will decide the election—is higher under the current electoral system than
under direct national election, unless the gap in voter preference between the candidates
is razor thin. “The Madisonian system, by requiring candidates to win states on the way
to winning the nation, has forced majorities to win the consent of minorities, checked the
violence of factions, and held the country together.” The connection with baseball? In the
World Series, the most runs doesn’t necessarily win the series—they “must be grouped in
a way that wins games, just as popular votes must be grouped in a way that wins states.”

Hildebrandt, Stefan, and Anthony Tromba, The Parsimonious Universe: Shape and Form
in the Natural World, Springer-Verlag, 1996; xiv + 330 pp, $32. ISBN 0-387-97991-3.

Coffee-table books featuring mathematics appear rarely. This issue of this MAGAZINE may
reach you just in time to order holiday gifts. The less mathematically inclined your friends
may be, the more appropriate is this book, as it investigates natural forms without using
mathematical formulas and symbols—even those who profess to detest mathematics can be
seduced by geometry. This book is a revised and enlarged version of Mathematics and Opti-
mal Form (W.H. Freeman, 1984). It takes the reader from Maupertuis’s principle (“Nature
always minimizes action”), through astronomical theories, the Steiner problem, stable equi-
libria, soap films and isoperimetric problems, and on to optimization in nature. It is very
richly illustrated with drawings, figures, photographs, and reproductions of paintings.

TUG’95: Questions and answers with Prof. Donald E. Knuth, TUGBOAT: The Communi-
cations of the TgX Users Group 17 (1) (March 1996) 7-22. Knuth comments on code, Byte
21 (9) (September 1996) 60. Erickson, Jonathan, Letters, we get letters ..., Dr. Dobb’s
Journal 21 (9) (September 1996) 6.

“Computer programs are the most complicated things that humans have ever created.”
So says Donald Knuth, world-famous computer scientist. He retired recently at age 57 to
work full-time on completing his magnum opus, the seven volumes of The Art of Computer
Programming, which he started in 1962 and suspended for many years to create the TgX
document preparation system and the METAFONT font design system. He estimates that
it will take 20 more years to finish the remaining four volumes, at a rate of 256 pages per
year. Knuth was the recipient of the Inamori Foundation’s 1996 Kyoto Prize in the category
of Advanced Technology; along with a suitable plaque came $460,000.

Passell, Peter, 2 theorists of real-life problems get Nobel, New York Times (9 October 1996)
(National Edition) C1, C4.

James A. Mirrlees (Cambridge University) and William Vickrey (Columbia University)
were awarded the 1996 Nobel Prize in Economic Science. Vickrey, who died suddenly three
days after the award was announced, was the inventor of the Vickrey auction, in which the
highest bidder wins but pays only the second-highest bid. Such an auction encourages the
bidders to bid the maximum amounts that they are willing to pay.
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sci.math FAQ [Frequently asked questions for the Usenet newsgroup sci.math]. http:
//daisy.uwaterloo.ca/~alopez-o/math-faq/math-faq.html .

Here is a quick and handy source for answers to questions that often pop up in the minds of
students. Here are some examples: What is 0° and why? Why is it true that 0.9999. .. = 1?
What are the details of the attempt to legislate the value of 7 to be 3?7 How are the digits of
7 computed? Who has won the Fields Medal? Why is there no Nobel prize in mathematics?
Who is Bourbaki? What are the 23 Hilbert problems? What is the largest known Mersenne
prime? It’s much easier to access this source, or point students to it, than to figure out
where to look for printed information, make a trip to the library, photocopy the material,
etc. The collaborators who issue these little essays are looking for volunteers who would
expand this online mini-encyclopedia.

Dubrovsky, Vladimir, Nesting puzzles, Part I: Moving oriental towers, Quantum 6 (3)
(January-February 1996) 53-57, 49-51; Part II: Chinese rings produce a Chinese monster,
6 (4) (March-April 1996) 61-65, 58-59.

Beginning with the Tower of Hanoi and Chinese rings puzzles, this pair of articles explores
contemporary versions and extensions of such puzzles. It goes on to note their connection
with dragon curves, which are formed by folding a strip of paper in half multiple times (see
Nikolay Vasilyev and Victor Gutenmacher, Dragon curves, Quantum 6 (1) (September—
October 1995) 5-10, 60.

Donahue, Bill, Jugglers now juggle numbers to compute new tricks for ancient art, New
York Times (Ntl. Ed.) (16 April 1996) B5, B10.

This article describes the mathematization of juggling. A juggling pattern can be described
by a sequence of integers, which both represent the heights of the throws and measure the
times between successive throws of a ball. Using this “site swap” notation, jugglers can
design new patterns, watch them be enacted by a computer program, and efficiently re-
member them. For mathematical details, see Joe Buhler et al., Juggling drops and descents,
American Mathematical Monthly 101 (6) (June-July 1994) 507-519.

Naik, Gautam, In sunlight and cells, science seeks answers to high-tech puzzles, Wall Street
Journal (16 January 1996) Al, A8.

Wall Street has discovered genetic algorithms. This cliché-ridden article (“back to Darwin,”
"reckless and random ways of nature,” “cold, digital domain of silicon-based technology,”
etc.) cites the development of “T-cells” of computer code that seek out potential virus-
containing code and of an evolving system of self-reproducing systems of rectangles, and of
an electronic system of drawing portraits of suspects. But those applications aren’t where
the money is—in a short throwaway paragraph, the author mentions companies that use
genetic algorithms to farm out computer-service jobs and pick stocks for a pension fund.

Wakeling, Edward (ed.), Lewis Carroll’s Games and Puzzles, Dover, 1991; 128 pp, $4.95
(P). ISBN 0-486-26922-1. Rediscovered Lewis Carroll Puzzles, Dover, 1995; xiii + 79 pp,
$4.95 (P). ISBN 0-486-28861-7.

These are two volumes of games and puzzles from the writings of Lewis Carroll, including
ones extracted from previously unpublished letters, papers, and diary entries. Not all of
the puzzles and games may be original with Carroll, but all were used by him to entertain
his colleagues and young friends. Compiler Wakeling has included his own solutions.
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Paul Erdos,

Paul Erdés, the world’s best traveled
mathematician, died on September 20,
1996 in Poland. He was 83. For math-
ematics this was the end of an era.
Even among mathematicians, who of-
ten do not appear to be quite of this
world, Erd8s stood out as sui generis.
One of the most prolific of twentieth-
century mathematicians, at the time of
his death he had published over 1500
mathematical papers, with more on the
way. Though his mathematical produc-
tivity did not match that of the leg-
endary Euler, with his 70+ volumes of
published works, it did invite compar-
isons.

Erdds started life as a child prodigy,
encouraged by his parents who were
both mathematics teachers. He discov-
ered negative numbers at the age of
four, and by the age of eighteen he had
proved a significant theorem in num-
ber theory, a field where he made many
important discoveries, including contri-
butions to an elementary proof of the
prime number theorem. In later years,
while maintaining an interest in num-
ber theory, he shifted to combinatorics.
When asked about this he replied that
the remaining open problems in num-
ber theory were too hard. One area
of combinatorics where he made some
of his most profound and interesting
contributions is Ramsey theory. An-
other achievement in combinatorics is
his well-known theorem (with Anning)
which states that if an infinite number
of points in the plane are all separated
by integer distances, then all the points
lie on a straight line.

1913-1996

Clearly Erdds will be missed as a pro-
ductive mathematician. But he will
also be missed as a source of good-
natured anecdotes and stories. Math-
ematicians have often been accused of
not being interested in the history of
their subject, only in stories of mathe-
maticians. Erdds provided them with
an endless stimulus for stories: an
Erdds number (the least distance be-
tween a mathematician and Erdds mea-
sured by a chain of coauthorships); the
language Erdese (English pronounced
as if it were Hungarian); the special
vocabulary (“epsilon” for “child,” “poi-
son” for “alcohol,” “to leave” for “to no
longer do mathematics”); the “Book”
(God’s list of all the most elegant proofs
in mathematics), and so on. Also, as
the most traveled of mathematicians—
possibly the most traveled of scientists
of any kind—he served mathematics as
a twentieth-century Marin Mersenne, a
one-man clearing-house for information
on the status of problems in his fields.

Erd8s’s incessant traveling around
the world led to a great number of
coauthors—over 400—writing in many
languages, and this led Leo Moser to
compose the following limerick:

A conjecture both deep and
profound

Is whether a circle is round.

In a paper of Erdds

Written in Kurdish

A counterexample is found.

After that, Erdds tried to publish a pa-
per in Kurdish but could not find a
journal.

395
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What has been neglected in some re-
cent articles on Erdés is mention of his
basic kindness: his entertaining “ep-
silons” with tricks and sleight of hand,
his visiting the families of mathemati-
cians who had recently died, his loans
and outright gifts to promising stu-
dents. Probably one of the explana-
tions for his extraordinary mathemat-
ical career was his almost child-like cu-
riosity, always about mathematics but
about other things as well. His first
question when he arrived on my own
campus was: “What was the tempera-
ture in this valley during the Ice Age?”
(I didn’t know.)

Erdds was acutely aware that life—
especially one’s productive life as a
mathematician—is finite. = He joked
about his first two-and-a-half billion
years in mathematics (when he was
born scientists thought the earth was

two billion years old; they later re-
vised the figure upward to four-and-a-
half billion years!). But for years he
described himself as old. He would
on occasion add letters to the end of
his name like degrees: P.G.O.M. (poor
great old man), L.D. (living dead—a
titled added at age 60), A.D. (arche-
ological discovery—added at age 65),
L.D. (legally dead—at age 70), and so
on. At a memorial symposium to honor
George Pdlya, Erdds said: “In the Ara-
bian Nights, they say ‘May the King live
forever.” In Pdlya’s case, we can say,
‘May his theorems live forever.”” May
Erdés’s theorems live forever. And may
all of his proofs turn out to be in the
“Book.”

G.L. Alexanderson
Santa Clara University
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"THE LAST THEOREM OF
PIERRE FERMAT, A STUDY"

The last theorem of Fermat is still as interesting as ever! Here is
another addition to the literature of this well-known problem. The
book is a study of the structure of the equation. Certain types of
numbers emerging in the analysis are defined and their properties
investigated. The study of the equation gives many identities as
well as modulo relations. For small primes the modulo properties
are numerically investigated with the help of a programmable
pocket calculator. Symmetries of the expressions are used to
minimize calculation time.

I.A. Sakmar, University of South Florida, Tampa

1994, 188 pp 93-92810, Hardcover $50.00

Shipping & Handling:

US $2.50. Airmail: US & Canada, $4.50; Europe $9.00.
Mail Orders To: P.O. Box 752, Plant City, FL 33564

Coming this winter...

ot 80th Annual

S | AMS-MAA JOINT
MATHEMATICS
MEETINGS

San Diego J ANUARY 8-1 1 ’ 1997

CALIFORNIA

January 8-11, 1997 o San Dieg09 CA L

For more details, visit "Meetings" under
MAA homepage at: http://www.maa.org
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and if you thought you knew
what Mathematica was about...

...look again.

MATHEMATICA

WOLFRAM

RESEARCH http://www.wolfram.com/look/mxm ¢ 1-888-984-5005 (Toll Free)

Mathematica is the world’s only fully integrated environment for technical computing and is now used by over a million technical professionals
and students. Mathematica 3.0 introduces major new concepts in computation and presentation, with unprecedented ease of use and a revolutionary symbolic
document interface. Mathematica 3.0 is being released for Microsoft Windows, Macintosh and over twenty Unix and other platforms. For o complete catalog of
Wolfram Research products, contact: Wolfram Research, Inc.: http://www.wolfram.com; info@wolfram.com; +1-217-398-0700; Wolfram Research Europe Ltd.:
http://www.wolfram.co.uk; info@wolfram.co.uk; +44—(0)1993-883400; Wolfram Research Asia Ltd.: http://www.wolfram.co.jp; info@wolfram.co.jp; +81-(0)3-5276-0506.

1996 Wolfram Research, Inc. Mathematica is a registered trademark of Wolfram Research, Inc., and is not associated with Mathematica Policy Research, Inc. or MathTech, Inc
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ERIVE is the trusted mathe-

matical assistant relied upon by

students, educators,
engineers, and scientists around
the world. It does for algebra,
equations, trigonometry, vectors,
matrices, and calculus what the
scientific calculator does for
numbers — it eliminates the
drudgery of performing long and
tedious mathematical calcula-
tions. You can easily solve both
symbolic and numeric problems
and see the results plotted as 2D or
3D graphs.

For everyday mathematical work DERIVE
is a tireless, powerful, and knowl-
edgeable assistant. For teaching or
learning mathematics, DERIVE gives you
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© 1996 Soft Warehouse, Inc. DERIVE is a registered trademark of Soft Warehouse
Inc. Other trademarks are the property of their respective owners
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Length: 10:10:160.16

~ the freedom to explore different

mathematical approaches better
and more quickly than by using
traditional methods.

System Requirements:
Windows 95, 3.1x or NT running
on a computer with 8 megabytes
of memory.

Suggested Retail Price: $250.
Educational pricing available.

For product information and list of
dealers, fax, email, write, or call Soft
Warehouse, Inc. or visit our website at
http://www.derive.com.

The Easiest just got Easier.

Soft Warehouse, Inc. « 3660 Waialae Avenue
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THE MATHE

Laboratory
Experiences
in Group

A lab manual with software for introductory courses
in group theory or abstract algebra

Laboratory Experiences in Group Theory is a workbook
of 15 laboratories designed to be used with the software
Exploring Small Groups as a supplement to the regular
textbook in an introductory course in group theory or
abstract algebra. Written in a step-by-step manner, the
laboratories encourage students to discover the basic
concepts of group theory and to make conjectures from
examples that are easily generated by the software.
The labs can be assigned as homework or can be used
in a structured laboratory setting. Since the software is
user-friendly and the laboratories are complete, stu-
dents and faculty should have no difficulty in using the
labs without training.

Most students find that the laboratories provide an
enjoyable alternative to the “theorem-proof-example”
format of a standard abstract algebra course. At the end
of the semester, one student wrote in his evaluation of
the course:

I am truly grateful for the laboratory component...Work
on the computer helped to make the abstract theory
more concrete... One of the best things about the labs
was that we formed our own conjectures about the pat-
terns we saw...I believe that the progression of (1) lab,

MATICAL ASSOCIATION OF AMERICA 2=

Laboratory Experiences
in Group Theory

A Manual to be Used with
Exploring Small Groups

Ellen Maycock Parker

Series: Classroom Resource Materials

(2) conjecture, (3) class discussion, and (4) proof was
highly beneficial in gaining understanding of the
abstract material of the course.

Table of Contents: 1. Groups and Geometry; 2. Cayley
Tables; 3. Cyclic Groups and Cyclic Subgroups; 4.
Subgroups and Subgroup Lattices; 5. The Center and
Commutator Subgroups; 6. Quotient Groups; 7. Direct
Products; 8. The Unitary Groups; 9. Composition
Series; 10. Introduction to Endomorphisms; 11. The
Inner Automorphisms of a Group; 12. The Kernel of an
Endomorphism; 13. The Class Equation; 14. Conjugate
Subgroups; 15. The Sylow Theorems; Appendix A.
Table Generation Menu of Exploring Small Groups
(ESG); Appendix B. Sample Library of ESG; Appendix
C. Group Library of ESG; Appendix D. Group
Properties Menu

Exploring Small Groups, the software packaged with
this lab manual, is on a 312" DD PC compatible disk.
This is a DOS program that can be run in Windows.
The software was developed by Ladnor Geissinger,
University of North Carolina at Chapel Hill.

112 pp., Paperbound, 1996

ISBN 0-88385-705-7

List: $22.00 MAA Member: $16.00
Catalog Code: LABEJR

ORDER FROM:
THE MATHEMATICAL ASSOCIATION OF AMERICA
PO Box 91112, Washington, DC 20090-1112

1-800-331-1622

Membership Code:
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Address
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State Zip
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She Does Math!

Real-Life Problems From
Women On The Job

Marla Parker, Editor

She Does Math! presents the career histories of 38 pro-
fessional women and math problems related to their
work. Each history describes how much math the
author took in high school and college; how she chose
her field of study; and how she ended up in her current
job. Each of the women presents problems that are typi-
cal of those she has faced in her job. The problems
require only high school mathematics for their solu-
tion.

Who should have this book?

Your daughter, your granddaughter, your sister, your
former math teacher, your students—and young men
too. They want to know how the math they study is
-applied, and this book will show them.

There are many reasons to buy this book:

» By reading the career histories of the women profiled
in this book, young people will learn that if they take
mathematics courses in high school and college they
will be qualified to enter interesting technical fields
and earn good salaries.

» The problems have special appeal to students who
are beginning to think about career choices.

» The book provides practical information about the
job market in an interesting, innovative way.

» Strong female role models who work as successful
technical professionals are presented.

» The problems are interesting and challenging, yet
require only high school mathematics. They demonstrate
how good math skills are applied to real-life problems.

Read what others have said about She Does Math!

Finally — a practical, innovative, well-written book
that will also inspire its readers. The wonder is...it's a
mathematics text and a biography! The idea of
women telling their own career stories, emphasizing

. REEE

[ 7yices s

the mathematics they use in their jobs is extremely

creative. This book makes me wish that I could go
through school all over again!

Anne L. Bryant, Executive Director

American Association of University Women

She Does Math! will undoubtedly appeal both to stu-
dents who already enjoy math and want to get a view of
potential career paths, and also to students who want to
better understand the relevance of their math classes to
their future careers. It is an absorbing look into the lives
of some very inspiring and talented women!
Susanne Hupfer and Elisabeth Freeman
Yale University

This collection is a wonderful confirmation that real
women do math. They do math in a surprising variety
of careers, fully enjoying the challenge and rewards of
solving complex problems. This is a book for young
women and men, a book for their teachers and parents,
a book that informs about the possibilities that mathe-
matics affords to all. It is also a book that will engage
you in real-life mathematics! - Doris Schattschneider
Moravian College

272 pp., Paperbound, 1995  ISBN 0-88385-702-2
List: $27.50 MAA Member: $20.95
Catalog Code: SDM/JR
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THE MATHEMATICAL ASSOCIATION OF AMERICA
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Membership Code:
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